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This book, ‘Discrete Mathematics’ deals with different concepts in computer 

oriented mathematics which are interrelated to one another. To be a 

successful professional one should know all the techniques involved in 

Discrete Mathematics.    

Unit 1: In this unit, we study the concept of set theory and discuss the 

idea of relations and functions.  

Unit 2: In this unit we study the concept of Permutations and 

Combinations with some illustrations.  Further we present the 

partition of integers and sets. Some basic identities involving 

bionomial coefficients are also discussed 

Unit 3: In this unit we study an alternative approach to represent the 

sequence by finding a Relationship among its terms. Also a few 

applications of Recurrences are discussed here. 

Unit 4: In this unit, our forces is on Partially Ordered relation, which is 

defined on a set, referred as Partially Ordered Sets. We also 

discuss various properties of Partially Ordered Relations on a Set.    

Unit 5: In this unit, we discuss the algebraic structure defined by a Lattice. 

Some characterizations of complemented and distributive Lattices 

are explained. 

Unit 6: In this unit we study Algebraic Structures by investigating sets 

associated with single operations that satisfy certain reasonable 

axioms.   

Unit 7: In this unit, we discuss the concept of Statements, Propositions 

and Tautologies. The concept of Equivalence of Formulas, Normal 
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Forms and Logical Inferences is discussed here with simple 

examples. 

Unit 8: In this unit we study the concept of Predicates, Quantifiers. The 

terms. Free and Bound Occurrences, Rules of inference are 

discussed here with standard examples. 

Unit 9: In this unit, we represent a Boolean function in a gating network. 

Various gates are used here to represent the expressions.   

Unit 10: In this unit we learn about Grammars and Languages with the 

help of standard examples. Also the classification of Grammars is 

studied here with examples.  

Unit 11: In this unit, we discuss the idea of Deterministic Finite Automata. 

The concept of Transition System is studied here with examples. 

The Language accepted by a DFA is also discussed here in a 

simple manner.  

Unit 12: This unit deals with the idea of graph theory. Here we study 

Adjacency and Degree of a graph. The idea of Subgraphs, Trees 

is also discussed here. The different property of trees and Rooted 

Trees is stated in this unit in a simple manner. 

Unit 13: This unit deals with the idea of Coding Theory. The concept of 

Hamming Distance, Linear Codes is discussed with simple 

examples. The concept of Cryptography is explained here in a 

simple manner 

 

 

 



 

 

 

 

 

 

This book of Discrete Mathematics deals with the different concepts in 

mathematics which are interrelated to one another. To be  a successful 

professional one should be knowing all the techniques involved in Discrete 

Mathematics.    

Unit 1: In this unit of Mathematical Preliminaries we study the concept of 

set theory and discuss the idea of relations and functions.  

Unit 2: In this unit we study the concept of Permutations and 

Combinations with some illustrations.  Further we present the 

partition of integers and sets, some basic identities involving 

bionomial coefficients are also discussed 

Unit 3: In this unit we study an alternative approach to represent the 

sequence by finding a relationship among its terms. Also few 

applications of recurrences are discussed here. 

Unit 4: In this unit our interest is partially ordered relation which is defined 

on a set, referred as partially ordered sets. We also discuss 

various properties of partially ordered relations on a set.    

Unit 5: In this unit we discuss the algebraic structure defined by a lattice. 

Some characterizations of complemented and distributive lattices 

are obtained  
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Unit 6: In this unit we study algebraic structures by investigating sets 

associated with single operations that satisfy certain reasonable 

axioms.   

Unit 7: In this unit we discuss the concept of Statements, Propositions 

and Tautologies. The idea of Equivalence of formulas, normal 

forms and Logical Inferences is discussed here with simple 

examples. 

Unit 8: In this unit we study the concept of Predicates, Quantifiers. The 

idea of Free and Bound Occurrences, Rules of inference is 

discussed here with standard examples. 

Unit 9: In this unit we represent a Boolean function in a gating network. 

Various gates are used here for representing the expressions.   

Unit 10: In this unit we learn about Grammars and Languages with the 

help standard examples. Also classification of Grammars is 

studied here with examples.  

Unit 11: In this unit, we discussed the idea of Deterministic Finite 

Automata. The concept of Transition System is studied here with 

examples. The Language accepted by a DFA is also discussed 

here in a simple manner.  

Unit 12: This unit deals with the idea of graph theory. Here we study 

Adjacency and Degree of a graph. The idea of Subgraphs, Trees 

is also discussed here. The different property of trees and Rooted 

Trees is stated in this unit in a simple manner. 

Unit 13: This unit deals with the idea of Coding Theory. The concept of 

Hamming Distance, Linear Codes is discussed with simple 

examples. The concept of Cryptography is explained here in a 

simple manner 



Discrete Mathematics Unit 1 

Sikkim Manipal University Page No.: 1 

Unit 1 Mathematical Preliminaries 

Structure 

1.1 Introduction 

 Objectives 

1.2 Sets  

1.3  Relations 

1.4 Functions 

1.5 Basic Number Theory  

1.6 Summary 

1.7 Terminal Questions 

1.8 Answers 

 

1.1 Introduction 

The concepts of set, relation and function are of fundamental importance in 

modern mathematics. The idea of a set has been intuitively used in 

mathematics since the time of ancient Greeks. Now set theory and its 

associated branches such as Group theory, Automata, Coding theory etc., 

have far reaching applications.  

The systematic development of set theory is attributed to the German 

mathematician George Cantor (1845 – 1918).  

Some elementary definitions of set theory have been studied by students in 

the high school standard. In this chapter we briefly give some preliminaries 

of set theory and discuss the relations and functions.  

 

Objectives: 

At the end of the unit you would be able to 

 perform different operations on sets 

 define functions and examples 

 describe different types of relations and properties. 

 learn the mathematical induction.  
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1.2 Sets 

The notion of a set is common; intuitively a set is a well defined collection of 

objects. The objects comprising the set are called its member or elements. 

The sets are usually denoted by the capital letter A, B, X, Y etc., and its 

elements by small letters a, b, x, y …… The statement, „x’ is an element of 

„A‟ is denoted by x  A and is read as “x belongs to A”. If „x’ is not an 

element of the set „A‟ then it is denoted by x  A (read as „x’ does not 

belong to A). Whenever possible a set is written by enclosing its elements 

by brace brackets { }. For example, A = {a, e, i, o, u}. The other way of 

specifying the set is stating the characteristic property satisfied by its 

elements. The above example of the set can also be written as the set of 

vowels in the English alphabet and is written as,                        

A = {x / x is a vowel in the English alphabet }. 

If the number of elements in a set is finite then it is said to be a finite set, 

otherwise it is said to be an infinite set. If a set contains only one element it 

is called a singleton set. If a set contains no elements, it is called a null set 

or empty set, denoted by .  

For example,  

 B = {1, 2, 5, 8, 9} is a finite set,   

 N = {x : x  is a natural number} = {1, 2, 3, 4, …} is an infinite set,   

 C = {2}  is a singleton set and   

 D = {x: x2 = 9 and x is even } is an empty set.   

A set consisting of at least one element is called a non – empty set.  

1.2.1 Definition 

If every element of a set A is also an element of a set B  then A is said to be 

a subset of B and it is  denoted by BA  or AB  .  

Clearly A , AA  .  
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For example, let N, Z, Q, R respectively denote the set of natural numbers; 

the set of integers; the set of rational numbers; the set of real numbers. 

Then 

RQZN  .  

A set „A’ is said to be a proper subset of „B’ if there exists an element of „B’ 

which is not an element of „A’.  That „A’ is a proper subset of B  if BA   

and BA  .  

For example, if A = {1, 3, 5} , B = {1, 3, 5, 7}  then A is a proper subset of  B 

Two sets  A and B are said to be equal if and only if BA   and AB  .  

1.2.2 Family of sets   

If the elements of a set A are themselves sets, then A is called a family of 

sets or a class of sets. The set of all subsets of set A  is called the power 

set of A and it is denoted by P(A).  

For example if A = {1, 3, 5} then.  

P (A) = { , {1}, {3), {5}, {1, 3}, {3, 5}, {5, 1} {1, 3, 5}} 

Note that there are 23 = 8 elements in P(A). If  set A  has n  elements, then 

its power set P (A)  has 2n elements.  

1.2.3 Definition      

If A is a finite set, then the cardinality of A  is the total number of elements 

that comprise the set and is denoted by n (A).   

The cardinal number or cardinality of each of the sets 

     c,b,a,b,a,a, … 

is denoted by 0, 1, 2, 3, … respectively.   

In any discussion if all the sets are subsets of a fixed set, then this set is 

called the universal set and  is denoted by U.                             
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For example, in the study of theory of numbers the set Z of integers is 

considered as the universal set.  

1.2.4 Union of sets  

The union of two sets A and B denoted by BA  is the set of elements 

which belong to A or B or both.  

That is,  BxorAx:xBA  .  

Properties:  

1. AAA   2. ABBA   

3.     CBACBA   4. BAA   and BAB   

1.2.5 Intersection of sets  

The intersection of two sets A and B denoted by BA  is the set of 

elements, which belong to both A and B.   

That is,  BxandAx:xBA  .  

Properties:   

1. AAA        

2. ABBA            

3.     CBACBA        

4.      CABACBA           

5.      CABACBA              

 If BA ,  then A and B are said to be disjoint sets.    

1.2.6 Definition   

The difference of two sets A and B, denoted by A – B is the set of elements 

of A, which are not the elements of B. That is,  

 Bx,Ax:xBA       

Clearly,   
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1. ABA     

2. ABBA    

3. AB,BA,BA   are mutually disjoint sets.     

1.2.7 Definition  

The complement of set A with respect to the universal set U is defined as U 

– A and is denoted by A   or 
c

A . That is,          

 Ax,Ux:xA   

Clearly,  

1.    AA 
  2. U  3. U     

1.2.8 De Morgan’s laws  

For any three sets A, B, C  

1.      CABACBA   

2.      CABACBA   

3.   BABA 


  

4.   BABA 


  

1.2.9 Definition    

Let A and B be two sets. Then the Cartesian product of A and B is defined 

as the set of all ordered pairs. (x, y) Where ByandAx   and is 

denoted by A  B.            

Thus,     

  ByandAx:y,xBA         

Two ordered pairs (a, b) and (c, d) are equal if and only if a = c and b = d.        

If A contains m elements and B contains n elements, then A x B contains 

mn  ordered pairs.  
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1.2.10 Example 

If A = { 2, 3, 4}, B = {4, 5, 6} and C = {6, 7} 

Evaluate the following  

 (a)       CBBA     (b)  BCA   

 (c)   BBA     (d)    CBBA   

 (e)    CBBA   

Solution:   

(a)      46,5,44,3,2BA   

      5,47,66,5,4CB   

  Therefore             5,4,4,45,44CBBA   

(b)        76,5,47,6BC;4,3,2A   

 Therefore 

            7,47,37,274,3,2BCA   

(c)      3,26,5,44,3,2BA   

  Therefore      6,5,43,2BBA   

                          6,3,5,3,4,3,6,2,5,2,4,2  

(d) We have        5,43,2CBBA   

                  5,34,35,24,2  

(e)    6,5,44,3,2BA   

                   6,4,5,4,4,4,6,3,5,3,4,3,6,2,5,2,4,2   

          7,66,5,4CB     

                           7,6,6,6,7,5,6,5,7,4,6,4    

 Therefore         CBb,a:BAb,aCBBA   

                         5,4,4,4,6,3,5,3,4,3,6,2,5,2,4,2  
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Self Assessment Questions 

1. Find x and y if (3x+y, x – 1) = (x+3, 2y – 2x) 

2. If A = {1,2,3}, B = {2,4,5} find  

  (A   B) x (A – B) 

  (b) A  (A – B)  

 (c) (A  B)  (A  B)  

3. If A = { x/x N and x < 3}, B = { x/x2 – 16= 0  and x < 0} find B x A where 

N is a set of natural number  

4. If A = {x | x is a positive prime. There are no negative primes <8 }  

B = {6, 7, 8},  C = { 7 ,8, 9 }   

 find (A  B)  ( B  C)  

 (A prime number is a natural number other than one whose only factors 

 are one and itself) 

5. If A ={ x/ x2-5x+6 = 0},  B= { 2,4},  C= {4,5} find ( A – B)  (B – C) 

6. Let A ={ 1,2,3,4 }, B = { 3,4,5,6 } and C = { 1,4,7,8 }  determine                            

 A  B  C = (A  B)   C Also verify that 

      a) A  B  C = (A  B)  C  

      b) A  B  C = A  (B  C) 

7. If  06x5x:xA
2

 ,  4,3,0B  , 

 4xandNx:xC   

 Evaluate the following: 

(a)  CBA   

(b)    CBBA   

(c)    BCBA   

 

1.3 Relations 

A relation may involve equality or inequality. The mathematical concept of a 

relation deals with the way the variables are related or paired. A relation 

may signify a family tie such as “is the son of”, “is the father of” etc. In 
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mathematics the expressions like “is less than”, “is greater than”, “is 

perpendicular”, “is parallel to”, are relations.  In this unit, we shall consider 

the relations called binary relations. 

1.3.1 Definition 

Relation R from a set A to another set B is a subset of A B. That is, 

R   A  B. 

1.3.2 Note 

(i) If (a, b)  R, then we say that a is related to b by R and we write aRb. 

(ii) If a is not related to b by R, we write a R b. 

(iii) If B = A, then R  A  A is a relation on A. 

1.3.3 Example 

Take A = {1, 2, 3, 4, 5}.  Define a relation „R‟ on A as 

aRb  a > b 

Then R = { (5,1), (5,2), (5, 3), (5,4), (4,3),(4,2),(4,1), (3,2), (3,1), (2,1)} is a 

relation on A. 

1.3.4 Example 

Take Z+, the set of positive integers.  

Define aRb  a divides b 

Then clearly 4R12, since 4 divides 12, but not 5R16. 

1.3.5 Example 

Let R denote the set of real numbers. 

Define a relation S = {(a, b) | 4a2 + 25b2 
 100}. Then S is a relation on R. 

1.3.6 Definition 

Let R be relation from A to B. 

The domain of R is defined as 

Dom R = {x  A | (x, y)  R for some y  B} 

and the range of R is defined as  

Range R = { y  B | (x, y) R for some x  A}. 
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1.3.7 Definition 

Let R be a relation on set S.  We define the inverse of the relation R as the 

relation R–1, where b R–1a   a R b. The complement relationR is a 

relation such that aR b  a R b. 

1.3.8 Example  

(i) Take A = {Set of all living people}. Define B = {(x, y) | x is parent of y} 

and C = {(y, x) | y is child of x}.  Then each of B and C is the inverse of 

other. 

(ii) Take A = {1, 2, 3}. Define R = {(1, 2), (1, 3), (2, 2), (2, 3)}.  Then  

 R = {(1, 1), (2, 1), (3, 1), (3, 2), (3, 3)}. 

1.3.9 Definition 

(i) A relation R on set A is said to be identity relation, denoted by IA, if IA 

= {(x, x) | x  A} 

(ii) A relation R on set A is said to be a universal relation if R = A  A. 

1.3.10 Example 

(i) Take A = {1, 2, 3}, then IA = {(1, 1), (2, 2), (3, 3)} 

(ii) Take A = {(a, b)}. Define R = {(a, a), (a, b), (b, a), (b, b)}, which is a 

universal relation. 

1.3.11 Definition 

A relation R on a set A is  

 reflexive if a R a for all a  A. 

 irreflexive if a R a  for every a  A. 

 symmetric if  a R b  b R a 

 anti– symmetric if a R b , b R a  a = b 

 asymmetric if a R b implies b R a. 

 transitive if  a R b and b R c  aRc 
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1.3.12 Example 

(i) Take T = {(a, b) | a, b  a, a = b}. Since a = a for all a  A and so (a, a) 

 R for all a  A. Therefore R is reflexive. 

 Suppose (a, b)  R. Then a = b, which is same as b = a. 

 Therefore (b, a)  R. So R is symmetric. 

 Suppose (a, b)  R, (b, c )  R. Then a = b, b = c 

 This means a = c and so (a, c)  R. 

 Therefore R is transitive. 

 R is not irreflexive 

 R is antisymmetric. 

(ii) Take A = Z+, the set of positive integers. 

 Define R = {(a, b) | a < b} 

 R is not reflexive, since a is not less than a. 

 R is irreflexive, since (a, a)  R for every a  A. 

 R is not symmetric, since if a < b, but not b < a. 

 R is transitive, since a < b, b < c  a < c 

 R is asymmetric 

(iii) Take A = Z+ and define R ={(a, b) | b = a2} 

 Then R is not reflexive 

 R is not symmetric 

 R is asymmetric 

 R is not asymmetric 

 R is not transitive, since (2, 4), (4, 16)  R but (2, 16)  R 

1.3.13 Definition 

A relation R on a set A is called an equivalence relation if R is reflexive, 

symmetric and transitive. 

1.3.14 Example  

Take A = {1, 2, 3, 4}. Define   
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R = {(1, 1), (1, 2), (2, 1), (2, 2) (3, 3) (3, 4), (4, 3), (4, 4). Then R is a 

reflexive, symmetric and transitive.  Therefore R is an equivalence relation. 

Take A = Z, the set of integers.  

 Define: R = {(a, b) | a  b}. Now a  a for all a  Z, R is reflexive.  a  b  b 

 a,  R is not symmetric.  

a  b, b  c  a  c, R is  transitive.  

Therefore R is not an equivalence relation. 

Take A = Z, the set of integers.   

Define:  R = {(a, b} | a  r (mod 2), b  r (mod 2)}.  

That is (a, b)  R   a and b give the same remainder r when divided by 2. 

R is an equivalence relation. 

1.3.15 Definition 

Let S be a non empty set. A class {Ai}iI is said to be a partition for S if it 

satisfies : 

   
SA)ii(

jiallforAA)i(

Ii

i

ji











 

1.3.16 Theorem 

Let P be a partition of the Set A. Define a relation R on R as a R b  a and b 

are the numbers of the same block. Then R is an equivalence relation on A. 

Proof:  Reflexive:  a and b are in the same block for aA and so a R a. 

Symmetric:  a R b  a and b are in the same block 

         b and a are in the same block  

                               b R a 

Transitive:  a R b, b R c  a, b, c are in the same block  a R C. 

Therefore R is equivalence relation. 
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1.3.17 Properties of Equivalence Relations 

Let R be an equivalence relation defined by A. Let a, b  A be arbitrary 

elements. Then, 

 

     

   

        







baorba)iv(

R)b,a(ba)iii(

baab)ii(

aa)i(

 

1.3.18 Definition 

Let A = {a1, a2, …, an} and B = {b1, b2, … , bn}. 

If R is relation from A to B, then R can be represented by matrix                

MR = (Mij)mn, defined 










 R)a,a(if0

R)a,a(if1
)M(

ji

ji
nmij  

where Mij is the element in the ith row and jth column. MR can be first obtained 

by first constituting a table, whose columns are preceded by a column 

consisting of successive elements of A and where rows are headed by row 

consisting of successive elements of B. If (ai, bj)  R, then we enter 1 in the 

ith row and jth column. 

1.3.19 Example 

Let A = {1, 2, 3} and R = {(x, y) | x < y}. Write MR. 

Solution: R = {(1, 2), (1, 3), (2, 3)}. Since (1, 2)  R, we have m12 = 1;       

(1, 3)  R, we have m12 = 1; also m23 = 1.  Therefore:  



















000

100

110

M R  
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1.3.20 Example 

Let A = {1, 2, 3, 4}. Define a R b  a < b. Then  























0000

1000

1100

1110

M R  

1.3.21 Example 

Write the relation for the relation matrix 



















011

100

001

M R  

Solution: Since M is a 3 3 matrix, take A = {a1, a2, a3} and B = {b1, b2, b3} 

Then R = {(a1, b1), (a2, b2), (a2, b3), (a3, b1)} 

1.3.22 Definition 

A relation R is transitive if and only if MR = [mij] has the property: 

mij = 1 and mik = 1  mik = 1 

1.3.22 Example 

Define a relation R represented by a matrix  



















110

110

001

M R  

Here, m22 = 1, m23 = 1  m23 = 1 

         m23 = 1, m32 = 1  m22 = 1 

         m33 = 1, m32 = 1  m32 =1 

Therefore the relation R is transitive. 
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Self Assessment Questions 

8. Take A = {1, 2, 3, 4} and define  

  R = {(1, 2), (2, 3), (1, 3), (3, 4)}.  What are conditions that the relation  R 

 satisfies?    

9. Let A = { 1, 2, 3, 4}. Define R1, R2, R3 as follows 

  R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3), (4, 4)} 

  R2 = {(1, 1), (2, 2), (3, 3)} 

  R3 = {(1, 1), (1, 3), (3, 1), (1, 2), (3, 3), (4, 4)} 

  Determine whether these are reflexive, symmetric, anti-symmetric or 

 transitive. 

10. Let R = Set of real numbers. Define;  

 baR)b,a()i(   

   ba)b,a()ii(        

   baR)b,a()iii(   

 Which of these are equivalence relations? 

 

1.4 Functions  

1.4.1 Definition 

Let A and B be two non – empty sets. A function or a mapping f  from A to B 

is a rule, which associates  every element of A with a unique element of B 

and is denoted by BA:f  .    

In other words, a function f from A to B is a relation satisfying the following: 

i) Every element of A is related to some element of B.  

ii) no element of A is related to two different elements of B. 

If BA:f  is a function then A is called the domain and B is called the co-

domain of f. If Ax   is associated with a unique element By  by the 
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function f, then y  is called the image of x under f and is denoted by y = f(x). 

Also x is called the pre-image of y under f. 

The range of f is the set of those elements of B, which appears as the image 

of at least one element of A and is denoted by f(A). Thus 

    Ax:BxfAf  . Clearly f (A) is a subset of B. 

1.4.2 Example 

Let A = {1, 2, 3, 4} and Z be the set of integers. Define ZA:f   by f (x) = 

2x + 3. Show that f is a function from A to B. Also find the range of  f. 

Solution: 

Now          114f,93f,72f,51f   

Therefore         11,4,9,3,7,2,5,1f   

Since every element of A is associated with a unique element of B, f is a 

function.  

Range of f = {5, 7, 9, 11} 

1.4.3 Example 

Let N be the set of natural numbers. If NN:f  is defined by f(x) = 2x – 1 

show that f is a function and find the range of  f. 

Solution: 

Now        ,.....53f,32f,11f   

Therefore         ,.....7,4,5,3,3,2,1,1f   

Clearly  f  is a function.  

Range of f = {1, 3, 5, 7, ...}  

1.4.4 Example 

Let R be the set of real numbers. Define RR:f   by   2
xxf   for 

every Rx  . Show that f is a function and find the range of f. 
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Solution: 

Here f associates every real number to its square, which is certainly a real 

number. Hence f is a function. Range of R is the set of all non – negative 

real numbers.  

1.4.5 Definition  

A function f : A  B is said to be one – one or injection if for all x1, x2,  A, 

f(x1) = f(x2) implies x1 = x2. The contrapositive of this implication is that for all 

x1, x2,  A, x1  x2 implies f(x1) f(x2) 

Thus a function f : A  B is said to be one – one if different elements of A 

have different images in B.  

1.4.6 Example 

Let  R be the set of real numbers. Define RR:f   by  

i)   3x2xf   

ii)   3
xxf  for every Rx   prove that f is one-one.  

Solution: 

i) Let    21 xfxf   for some Rx,x 21   

 3x23x2 21   

 21 xx   

 Thus for every    2121 xfxf,Rx,x   implies 21 xx  . 

 Therefore f is one – one.  

ii) Let    21 xfxf   for some Rx,x 21   

       
3

2

3

1
xx   

   21 xx   Therefore f  is one – one. 

1.4.7 Example 

If f : R  R  is defined by   2
xxf   for every Rx  , show that f  is not  

one – one.  
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Solution: 

Let     21
2

2

2

121 xxxxxfxf   

Hence f is not one – one.  

For example,   42f   and   42f  . The images of – 2 and 2 are not 

different. Hence f is not one – one.  

1.4.8 Definition   

A function BA:f   is said to be onto or surjection if for every By   there 

exists at least one element Ax   such that f(x) = y. i.e., every element of 

the co-domain B appears as the image of at least one element of the 

domain  A. 

If f is onto then  f(A) = B 

1.4.9 Example 

Define RR:f   by  

 (i) f(x) = 2x + 3 (ii)   3
xxf   forever Rx   

Show that f is onto  

Solution: 

i) Let Ry  . Then to find Rx   such that f(x) = y  i.e., 2x + 3 = y  

 Solving for x we get, 
2

3y
x


  

 Since R
2

3y
x,Ry 


  

 Hence for every Ry   exists R
2

3y
x 


  such 

 that y
2

3y
f 












 
. Therefore f is onto.  
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ii) Let Ry  . We shall show that there exists Rx   such that f (x) = y. 

That is yx
3

 . Hence 3

1

yx  . If Ry  , then Ry 3

1

 . Thus for 

every Ry   there exists Ry 3

1

  such that yyyf

3

3

1

3

1



































.  

 Therefore f is onto.  

1.4.10 Example 

If RR:f   is defined by   2
xxf   for every Rx   then prove that  f  

is not onto.  

Solution: 

Since a negative number is not the square of any real number, the negative 

numbers do not appear as the image of any element of R. 

For example, R9   but there does not exist any Rx   such that 

  .9xxf
2

 Hence f is not onto.  

1.4.11 Definition 

A function BA:f   is said to be one – to – one or bijection if it is both  

one – one and onto.  

For example, if RR:f   is defined by  

i)   3x2xf     

ii)   3
xxf   for every Rx   then f  is one – to – one functions.  

1.4.12 Definition 

Let BA:f   be a function and By  . Then the inverse image of y 

under f denoted by  yf
1

is the set of those elements of A, which have y  

as their image.  

That is,     yxf:Axyf
1



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1.4.13 Example 

If RR:f   is defined by   5x3xxf
2

  find  

 (i)  3f
1

and (ii)  15f
1

 

Solution 

i) Let   y3f
1




 then   3yf   

   35y3y
3

  or 02y3y
2

  

       02y1y   

  Therefore 2yor1y  . Hence    2,13f
1




 

ii) Let   y15f
1




 Hence   15yf   

 Therefore 155y3y
2

  

 010y3y
2

  

           2yor,5yTherefore02y5y   

 Hence    5,215f
1




 

1.4.14 Definition  

If a function BA:f   is one – one and onto then the inverse of f denoted 

by AB:f
1




 is defined by     fy,x:x,yf
1




 

Thus if BA:f   is both one – one and onto then AB:f
1




 is 

obtained by reversing the ordered pairs of f. 

Note that f –1 exists only when f is both one – one and onto. Further f –1 is 

also one – one and onto. 

1.4.15 Example 

Let Q be the set of the rationals. If QQf : is defined by  

f (x) = 2x –3 for every Qx   then find f –1 if it exists.  
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Solution: 

i) Let  f(x1) = f (x2)  

 2121 xx3x23x2   

 Hence f  is one – one.  

ii) Let Qy  . Then to find   yxf:Qx   

 i.e., 
2

3y
xThereforey3x2


  

 Whenever y is rational, 
2

3y
x


  is also a rational. Hence there 

 exists Q
2

3y



 such  that y

2

3y
f 












 
 

Hence  f  is onto. Therefore QQ:f
1




exists.  

Let x  =  f –1
 (y)   Therefore  y = f (x)  

i.e., 
2

3y
xor3x2y


  

Define QQ:f
1




 by  
2

3y
yf

1 



 for every Qy  .  

Replacing y by x, we get   Qx
2

3x
xf

1






.  

This is required inverse function.  

1.4.16 Definition 

Let Rb,a   such that ba  .  

   bxa:Rxb,a  . 

[a, b] = {x  R: a   x  b} 

Further, semi – open or semi – closed intervals are defined as below:  

[a, b) = {x  R: a   x < b} 

(a, b] = {x  R: a  <  x   b} 

Likewise, [a, ) = { x   R: a   x} and (–, a] = {x  R: x   a} 

are semi-open intervals.  
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Let a be a real number. Then the open interval    a,a where 0  

is a real number is called the  neighbourhood of a. If 

   a,ax  then   axa . 

 

1.5 Basic Number Theory 

1.5.1 First Principle of Mathematical Induction 

Let S(n) be a statement about integers for n  N (set of natural numbers) 

and suppose S(n0) is true for some integer n0.  If for all integers k with k  n0,  

S(k) implies that S(k+1) is true, then S(n) is true for all integers n greater 

than n0. 

For instance, If Z is a set of integers such that   

a) 1  Z,  

b) n  Z  n +1  Z 

then all integers greater than or equal to 1 belongs to  Z. 

Second Principle of Mathematical Induction: Let S(n) be a statement 

about integers for n  N (set of natural numbers) and suppose S(n0) is true 

for some integer n0.  If S(n0),  S(n0+1), …, S(k) imply that S(k+1) for k  n0, 

then the statement S(n) is true for all integers n greater than n0. 

Well Ordering Principle: Any non-empty subset of the set of all positive 

integers contains a smallest (least) elements. However the set of integers is 

not well ordered. 

For the set of positive integers, the principle of mathematical induction is 

equivalent to the well-ordering principle.  A totally ordered set is said to be 

well ordered if any non-empty subset contains the smallest element.  It is 

clear that the set of positive rational numbers Q+ under  the  usual  ordering  

is  not  well-ordered.   
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For two integers d and n, we say that d divides n (we write d | n)  if  

n = cd  for some integer  c.  In this case, we also say that d is a factor of n.   

If d does not divide n, we write d \  n.  

1.5.2 Properties of divisibility 

i) n  | n  (reflexive property) 

ii) d  | n  and  n  | m    d  | m (transitive property) 

iii) d |n  and  d | m  d  | an + bm  for any two integers a  and  b  (linearity) 

iv) d  | n    ad  |am (multiplication property) 

v) ad  | an  and  a  0    d | n (cancellation law) 

vi) 1  | n (1 divides every integer) 

vii) n  | 0 (every integer divides zero) 

viii) 0  | n    n = 0 (zero divides only zero) 

ix) d  | n  and  n  0    |d|  |n| (comparison property) 

x) d | n  and  n  |d    |d| = |n| 

xi) d | n and d  0    (n / d) | n.   

1.5.3 Definitions 

i) If d | n, then 
d

n
  is called the divisor conjugate to d.   

ii) If d divides both  a  and b, then  d  is called a common divisor of  a  and  b. 

iii) If  d  0,  d  is a divisor of  a  and  b  and  c  is a divisor of  a  and  b,  

implies  c  divides  d;  then  d  is called the greatest common divisor 

(gcd) of  a  and  b. 

1.5.4 Note 

Every pair of integers a  and  b  have  g.c.d.  If d  is the greatest common 

divisor of  a  and  b,  then  d = ax + by  for some integers  x  and  y.  The 

g.c.d  of  a, b  is denoted by  (a, b)  or by  aDb.  If  (a, b) = 1, then a and b 

are said to be relatively prime. 
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1.5.5 Properties (of greatest common divisor): 

i) (a, b) = (b, a) or  aDb = bDa  (commutative law) 

ii) (a, (b, c)) = ((a, b), c)   (associative law) 

iii) (ac, bc) = |c|(a, b)  (distributive law) 

iv) (a, 1) = (1, a) = 1  and  (a, 0) = (0, a) = |a|. 

1.5.6 Definition 

i) An integer n is said to be prime if n > 1 and if the only positive divisors 

of  n  are  1  and  n. 

ii) If  n > 1  and  n  is not prime,  then  n  is called composite number. 

1.5.7 Note 

i) (Euclid) There are infinite number of prime numbers. 

ii) If a prime  p  does not divide  a, then (p, a) = 1.  

iii) If a prime  p  divides  ab, then  p | a  or  p | b. Generally, if a prime p 

divides a product   a1. a2 … an, then  p | ai  for at least one  i. 

1.5.8 Fundamental Theorem of Arithmetic: (the unique factorization) 

Every integer n > 1 can be written as a product of prime factors in only one 

way, apart from the order of the factors. (That is, any positive integer a > 1 

can be factored in a unique way as a  =  1
1

p


. 1
2

p


. … t
t

p


  where p1,  

p2, …, pt are prime numbers, i, 1    i    t are positive integers and  

p1 > p2 > … > pt). 

[Example: 3000 = 2  2  2  5  5  5  3  =  23.53.31] 

1.5.9 Note 

i) Let n  be an integer. If the distinct prime factors of  n  are  p1, p2, … pr  

and if  pi  occurs as a factor ai  times, then we write,    

 n = 1a

1p  2a

2p  …  ra

rp  or  n = 


r

1i

ia
ip  

 and is called the factorization of  n  into prime powers. 
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ii) We can express 1 in this form by taking each exponent  ai  to be zero.  

iii) If  n = 


r

1i

ia
ip ,  then the set of positive divisors of  n  is the set of 

numbers of the form  


r

1i

ic
ip ,  where  0  ci  ai  for  i = 1, 2, …, r. 

iv) If two positive integers  a  and  b  have the factorization  a = 


r

1i

ia
ip ,  

b = 


r

1i

ib
ip , then their  g.c.d.  has the factorization (a, b) = 



r

1i

ic
ip   

where  ci = min{ai, bi} 

1.5.10 Note 

i) The infinite series 


1n np

1
 diverges where pn's are primes. 

ii) Division Algorithm:  Let  a, b be integers such that  b  >  0. Then there 

exist two integers p and q  such that a = pb + q  where  0      q   <   b.   

iii) (Euclidean Algorithm) Given positive integers a and  b, where  b \  a.   

 Let  r0 = a, r1 = b  and  apply the division algorithm repeatedly to obtain 

 a set of remainders r2, r3, …, rn, rn+1  defined successively by the 

 relations,   

 r0 = r1q1 + r2    0 < r2 < r1,    

 r1 = r2q2 + r3  0 < r3 < r2 

 …… 

 rn-2 = rn-1qn-1 + rn 0 < rn < rn-1 

 rn-1 = rnqn + rn+1 rn+1 = 0 

 Then   rn, the last non zero remainder in this process, is the g.c.d. of  a  

 and  b. 
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1.5.11 Definition 

The greatest common divisor of three integers  a, b, c  is denoted by  

(a, b, c)  and is defined as  (a, b, c) = (a, (b, c)). 

Note that from the properties of g.c.d, we have (a, (b, c)) = ((a, b), c).  So the 

g.c.d. depends only on  a, b, c  and not on the order in which they are written.  

1.5.12 Definition 

The g.c.d. of  n  integers a1, a2, …, an  is defined inductively by the relation  

(a1, a2, …, an) = (a1, (a2, …, an)). Again this number is independent of the 

order in which the  ai  appear. 

1.5.13 Note:   

i) If d = (a1, a2, …, an), then  d  is a linear combination of the  ai.  That is, 

there exist integers x1, x2, …, xn  such that  (a1, a2, …, an) = a1x1 + a2x2 

+ … + anxn. 

ii) If   d = 1, then numbers are said to be relatively prime. 

iii) If  (ai, aj) = 1 whenever  i  j, then the numbers a1, a2, …, an  are said to 

be relatively prime in pairs.  For instance, g.c.d {2, 3}  = 1,  g.c.d.{4, 9} 

= 1, g.c.d {75, 8} = 1. 

iv) If a1, a2, …, an  are relatively prime in pairs, then  (a1, a2, …, an) = 1. 

1.5 14 Definitions  

i) For any real number x, we define the floor of x as  x  = the greatest 

integer less than or equal to x = max {n / n  x, n is an integer} 

 For example, take x = 2.52, then 

 x  =  max {n / n  x, n is an integer} = max {1, 2}  = 2. 

ii) For any real number x, we define the ceiling of x as x  = the least 

integer greater than or equal to x = min {n / n  x, n is an integer}. 

 For example, take x = 3.732, then  

 x = min {n / n  x, n is an integer} = min {4, 5, 6, 7…} = 4. 
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1.5.15 Property 

a  b (mod  m) if and only if a mod m = b mod m. (In other words, two 

integers are congruent modulo m if and only if they leave the same 

remainder when divided by m). 

For example, 9 mod 5 = -16 mod 5 if and only if 9  -16 (mod 5). 

1.5.16 Property 

For any a, b,  a  - b  is a multiple of m if and only if a  mod  m  =  b  mod  m. 

The relation  “a    b mod  n” defined above is an equivalence relation on  Z.   

Proof:  Reflexive: Let   a    Z.  Since    n   divides   a - a  = 0,   we have  a  

  a  mod  n.     

Symmetric:   Let   a  b  mod  n        

                       n  divides  a – b  

                       n  divides  - ( a - b )  

                       n divides  b – a 

                      b    a  mod n. 

 Transitivity:   Let   a , b , c  Z   such that   a    b  mod  n,   b    c  mod  n   

                      n  divides  a - b, and     n   divides   b - c   

                      n  divides   ( a - b )  +  ( b - c)   

                      n  divides   a -  c    

                      a   c  mod  n. Hence the relation is an equivalence relation.  

1.5.17 Example  

Suppose n = 5. Then    

[0] = {x /x  0  mod  5}  

     = {x / 5 divides x - 0 = x}  

     =   {…, -10, -5, 0, 5, 10, …},   

[1] = {x   x   1 mod  5 } 

     =  { x / 5  divides  x - 1}  

     =  {…, -9, -4, 1, 6, …}, 
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[2] = {x  / x    2  mod  5 } 

     = { x / 5  divides  x -2 }  

     =  {…, -8, -3, 2, 7, 12, …},   

[3] = {x / x    3  mod  5 }  

     = {x / 5 divides x -3} 

     = {…, -7, -2, 3, 8, 13, …, 

[4] = {x / x  4  mod  5 } 

     = {x / 5 divides  x - 4} 

     =  {…, -6, -1, 4, 9, 14, …}. 

Also it is clear that   [0]   =   [5]   =   [10]  = …   [1]  =   [6]   =   [11]  = … [2]  =   

[7]   =   [12]  = … [3]  =   [8]   =   [13]  = …  [4]  =   [9]   =   [14]  = …. 

Therefore the set of equivalence classes is given by {[0], [1], [2], [3], [4]}.  

Self Assessment Questions 

11. Find the gcd of 858 and 325. 

12. If a|c and b|c, then is it true that “ab|c”? 

13. If gcd of {a, b} = 1, then what is the gcd of a + b and a – b ? 

14. Are every two consecutive integers co-prime? 

15. If a|b and c|d, gcd {b, d} = 1, then gcd {a, c} = ___________ 

16. If a and b are any two odd primes, then (a2 – b2) is _________ 

17. State whether the following are true or false. 

i) Sum of an integer and its square is even. 

ii) Difference between the square of any number and the number itself 

is even. 

18. If p > 1 and 2p – 1 is prime, then p is prime.  Is the converse true?  

Justify. 

19. Express 29645 in terms of their prime factors. 

20. Find the gcd {963, 657} and find the integers m and n such that gcd 

{963, 657}  = m.657 + n.963. 
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1.6 Summary 

In this unit we introduced the basic concept related to sets and the different 

ways of representing them.  Some properties common to operations on sets 

and logical statements were discussed here. Cartesian product of sets was 

studied as relations between two sets. Lastly, we defined the function as a 

particular kind of relations. This unit also provides the broad idea of number 

system. The set of integers are the building blocks of modern mathematics.  

The concept congruence and integer‟s mod n are indispensable in various 

applications of algebra.  We will learn some of the applications in 

cryptosystems in later units.   

 

1.7 Terminal Questions 

1. If        e,c,bC,e,dB,d,c,aA,e,d,c,b,aU   

 Evaluate the following 

 (a)  CBA      (b)    CBBA 


  

 (c)     CBBA     (d)   ACB 


  

 (e)   CAB   

2. Find the sum of divisors of 360. 

3. Find the number of multiples of 7 among the integers from 200 to 500. 

 

1.8 Answers 

Self Assessment Questions 

1) The ordered Pairs are equal if 3x+y = x+3 and x – 1 = 2y – 2x 

 i.e. 2x+y = 3 

 3x – 2y = 1 

 Solving x = 1,  y = 1 
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2) A  B = {2} 

 A – B    = {1,3} 

 B – A = {4,5} 

 A   B = (A – B)  (B – A) = { 1,3,4,5 } 

 (A  B) x (A-B) = (2) x {1,3} = {(2,1), ( 2,3)} 

 A x(A - B) = {1,2,3} x (1,3) = {(1,1), (1,3), (2,1),(2,3), (3,1), (3,3)} 

 (A  B) X (A  B) = { 1,3,4,5} X { 2 } = { (1,2),(3,2),(4,2),(5,2)}  

3) Since x2 – 16 = 0 

 A = {1,2} and B = { – 4}   

 (x – 4) (x + 4) = 0 

 BxA = {– 4} x {1, 2}   

 = {(– 4, 1), (– 4, 2)} ==> x= – 4,4 

 Therefore x = – 4 (x < 0) 

4) A = {2, 3, 5, 7}  B = { 6, 7, 8} C = { 7, 8, 9} 

 (A  B) = {7} and   (B  C) = {7, 8}  

 (A  B) x (B  C) = {7} x {7,8} = {(7,7), (7,8)} 

5) x2 – 5x+6=0 ==>   (x – 2) (x – 3) =0  ==>   x= 2,3 

 A= {2, 3}, B={2, 4} and C = {4, 5}  

 A – B = {3} and B – C ={2} 

 Therefore  (A – B) x (B – C) = (3) x (2) = ( 3, 2) 

6) (A  B) = { 3, 4}, ( B  C)= {4} 

 (A  B)  C = {3, 4}  {1,4,7,8} = {4} 

 A  (B  C)={1,2,3,4}  {4}={4} 

 Therefore A  B  C = (A  B)  C = A  (B  C) 

7) Now       3,203x2x:xA   

                 4,3,0B   

                   3,2,14xandNx:xC   

(a) A={2, 3}; B  C = {0, 3, 4}   {1, 2, 3} = {3} 

        Therefore           3,33,233,2CBA   
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(b)      4,3,2,04,3,03,2BA   

            4,03,2,14,3,0CB   

  Therefore        4,04,3,2,0CBBA                                         

                    4,4,0,4,4,3,0,3,4,2,0,2,4,0,0,0  

(c)      24,3,03,2BA   

      2,14,3,03,2,1BC   

  Therefore             2,2,1,22,12BCBA   

8) R is not reflexive, since (1, 1)  R 

 R is not symmetric, since (2, 3)  R but (3, 2)  R 

 R is not transitive, since (2, 3)  R, (3, 4) R, but (2, 4)  R. 

 R is irreflexive 

 R is asymmetric  

 R is antisymmetric 

9) R1: Reflexive, symmetric, transitive not anti-symmetric (since  1R12, 

2R11 but 1  2) 

 R2: Symmetric, not reflexive (since (4,4)  R2) transitive, antisymmetric  

 R3:  Not reflexive (since (2,2) R3) 

 Not symmetric (since (1,2)  R3 , (2,1)  R3  

 Not transitive (since (3, 1), (1, 2)  R3 , but (3, 2)  R3. 

 Not antisymmetric (since (1,3), (3,1)  R3 but 1  3) 

10) i) Equivalence relation 

ii) Not Symmetric and so it is not an equivalence relation 

iii) Not Symmetric and so not equivalence relation. 

11) gcd of 858 and 325 is 13.  

12) If it is not true.  For example, take a = 3, b = 6, c = 12.  Now 3|12 and 

6|12 but 3.6 \   12. 

13) Either 1 or 2. 
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14) Yes, the gcd of {n, n+1}, n  ℕ is equal to 1. 

15) gcd {a, c} = 1. 

16) Composite. 

17) (i)  Yes,  it is true. 

  (ii) Yes, it is true. 

18) If p is not prime, then p = mn, where m, n > 1. 

 Therefore 2p – 1 = 2mn – 1 = (2m)n – 1n.  Take 2m = a. 

 Now 2m = a = an – 1n where a = 2m > 2 

        = (a – 1)(an-1 + an-2 + … + 1n-1) 

 Now each of the two factors on right hand side is greater than 1 and 

 therefore 2p – 1 is composite, a contradiction. 

 Converse is not true: For example, take p = 11 is prime, but 211 – 1 is 

 divisible by 23 and so it is not prime. 

19) 5 × 72 × (11)2. 

20) gcd {963, 657} = 9, m = 22, n = -15. 

Terminal Questions 

1. (a)      e,bd,c,ae,d,c,b,aAUA   

       de,c,be,dCB   

                 d,ed,bde,bCBATherefore   

(b)          be,d,c,ae,d,c,b,aBAUBA 


  

              ee,c,be,dCB   

               e,bebCBBATherefore 


  

(c)      c,ae,dd,c,aBA   

      de,c,be,dCB   

             d,cd,adc,aCBBATherefore   
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(d)      e,d,c,be,c,be,dCB   

           aCBUCBTherefore 


  

           d,c,aaACBTherefore 


  

                                                           d,a,c,a,a,a  

(e)      ed,c,ae,dAB   

         d,ae,c,bUCUC   

   Therefore           d,e,a,ed,aeCAB  ) 
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Unit 2 Elementary Combinatorics 

Structure 

2.1 Introduction 

 Objectives 

2.2 Principle of Counting  

2.3 Permutation of Distinct Things 

2.4 Combinations   

2.5 Partitions and Binomial Coefficients 

2.6 Principle of Inclusion and Exclusion  

2.7 Summary 

2.8 Terminal Questions 

2.9 Answers  

 

2.1 Introduction 

Combinatorics, the study of arrangements of objects, is an important part of 

Discrete Mathematics. In this unit, we shall study the permutations and 

combinations with some illustrations. An experiment means a physical 

process that has a number of observable outcomes.  Simple examples are 

tossing of a coin, which has two possible outcomes HEAD and TAIL, rolling 

a die, which has six possible outcomes 1, 2, …, 6.  We would like to know 

how many possible outcomes are there in selecting 10 student 

representatives from 3000 students. Further, we present the partition of 

integers and the sets, some basic identities involving binomial coefficients. 

In formulas arising from the analysis of algorithms in computer science, the 

binomial coefficients occur.   
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Objectives:  

At the end of the unit, you would be able to 

 learn the principles of counting with certain natural objects. 

 apply the techniques of generating function to partitions and 

compositions. 

 apply the principles of inclusion and exclusion to various models. 

 learn the partitions of sets and binomial coefficients. 

 apply the principle of inclusion and exclusion in various situations.  

 

2.2 Principle of Counting  

When we consider the outcomes of several experiments, we shall follow the 

following rules.   

2.2.1 Rules: 

i) Rule of Sum: If the object A may be chosen in „m‟ ways, and B in „n‟ 

ways, then “either A or B” (exactly one) may be chosen in m + n ways.  

This can be generalized for any „p‟objects. 

ii) Rule of Product: If the object A may be chosen in m ways and the 

object B in n ways, then both “A and B” may be chosen in this order in 

„mn‟ ways.  This can be generalized for any „p‟ objects. 

2.2.2 Example 

If there are 42 ways to select a representation for class A and 50 ways to 

select a representative for the class B, then:  

i) By the rule of product, there are 42  50 ways to select the 

representative for both the class A and class B; 

ii) By the rule of sum, there will be 42 + 50 ways to select a 

representative for either class A or class B. 
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2.2.3 Example 

Suppose a license plate contains 2 letters followed by four digits, with the 

first digit not a zero.  How many different license plates can be printed? 

Solution: Each letter can be printed in 26 different ways. 

Since the first digit is other than zero, this can be selected in 9 ways. 

Second, third and fourth digits in 10 ways. 

Therefore, by the rule of product, there are – 

26   26   9   10   10 ways. 

Special case: All are distinct 

First letter can be printed in 26 ways. 

Second letter can be printed in 25 ways. 

First digit can be printed in 9 ways (other than „0‟). 

Second digit can be printed in 9 ways (any one from 0 to 9 except chosen 

first digit) 

Third digit can be printed in 8 ways 

Fourth digit can be printed in 7 ways. 

Therefore, by the rule of product, there are –  

26  25  9 9  8  7 ways. 

Self Assessment Questions 

 1. a) How many different binary bit strings of length 7 are there? 

b) Suppose a State‟s license plate consist of three letters followed by  

4  digits. How many different plates can be formed if repetitions are 

allowed? 

c) A company produces combination locks. The combinations consist 

of three numbers from 0 to 9 inclusive. No number can occur more 

than once in the combination. How many different combinations for 

locks can be attained? 

d) How many possible outcomes are there when 100 dice are rolled? 

e) A new-born child can be given 1 or 2 names. In how many ways can 

a child be named if we can choose from 100 names? 
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2.3 Permutation of Distinct Things 

Let us recollect that the first of the members of an r-permutation of n distinct 

things may be choosen in n ways. The second is chosen in (n - 1) ways, …., 

the rth is choosen in n – (n - 1) ways. 

So by the repeated application of product rule, the number required is –    

n(n - 1)….(n – (r - 1))  ways, n  r., it is denoted by p(n, r). 

If r = n, then p(n, n) = n(n - 1) … (n – n + 1)  = n(n - 1) … 2.1 = n!. 

Therefore  

p(n , r) = 
r)....2.1(n

1))....2.1(r2).....(n1)(nn(n




 

= 
r)!(n

n!


 

= 
r)n r,p(n

n) p(n,


 

or  p(n, n) = p(n, r),  p(n –r, n - r). 

2.3.1 Problem 

Prove that p(n, r) = p(n – 1, r) + rp (n – 1, r - 1) 

Solution: Write p(n, r) 

= n(n - 1) … (n – (r- 1))  =  (n - 1)(n - 2) . n – (r - 1)[(n - r) + r],  which is equal to 

 p(n – 1, r) + r.p(n –1, r - 1), on multiplication. 

2.3.2 Permutations with repetitions 

The number of permutations of n objects taken „r‟ at a time with unlimited 

repetition, which is same as the number of ways of filling r blank spaces with 

n objects.   

After choosing the object in n ways, the next object can also be chosen in „n‟ 

ways and so on.  Therefore, in this case there are – 

.w ays)r,n(Unnx....nn
r

timesr


  
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2.3.3 Example 

A bit is either 0 or 1: a byte is a sequence of 8 bits. Find the number of bytes 

that,  

(a) can be formed 

(b) begin with 11 and end with 11 

(c) begin with 11 and do not end with 11  

(d) begin with 11 or end with 11. 

Solution: 

(a) Since the bits 0 or 1 can repeat, the eight positions can be filled up 

either by 0 or 1 in 28 ways. Hence the number of bytes that can be 

formed is 256. 

(b) Keeping two positions at the beginning by 11 and the two positions at 

the end by 11, there are four open positions, which can be filled up in  

24 = 16 ways. Hence the required number is 16. 

(c) Keeping two positions at the beginning by 11, the remaining six open 

positions can be filled up by 26 = 64 ways. Hence the required number is 

64 -16 = 48. 

(d) 64 bytes begin with 11; likewise, 64 bytes end with 11. In the sum of 

these numbers, 

 64 + 64 = 128, each byte that both begins and ends with 11 is  counted 

 twice. Hence the required number is 128-16 = 112 bytes. 

2.3.4 Example 

A computer password consists of a letter of the alphabet followed by 3 or 4 

digits. Find the total number of  – 

(a) passwords that can be formed 

(b) passwords in which no digit repeats. 
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Solution: 

(a) Since there are 26 letters and 10 digits and the digits can be repeated by 

product rules, the number of 4-character password is 26.10.10.10. = 26000.  

Similarly the number of 5-character password is 26.10.10.10.10.=  260000.  

 Hence the total number of passwords is 26000 + 260000 = 286000. 

(b) Since the digits are not repeated, the first digit after a letter can be taken 

from any one out of 10, the second digit from remaining 9 digits and so 

on.  

 Thus the number of 4- character password is 26.10.9.8 = 18720 and 

 the number of 5-character password is 26.10.9.8.7 = 131040  by 

 the product rule.  

(c) Hence, the total number of passwords is 149760. 

2.3.5 Example 

How many 6-digit telephone numbers have one or more repeated digits? 

Solution: Six-digit numbers can be formed in 106 ways. There are P(10, 6), 

6-digit numbers without repetitions. Hence there are 106-P(10, 6) numbers 

have one or more digits repeated.  

2.3.6 Problem 

Find the sum of all the four digit number that can be obtained by using the 

digits 1, 2, 3, 4 once in each. 

Solution: The number of permutations (arrangements) can be made using 

4 numbers (1, 2, 3, 4) taking 4 at a time is p(4, 4) = 
0!

4!
 = 24. 

Each number occurs 6 times in unit place, 6 times in 10th place, 6 times in 

100th place, 6 times in 1000 place. 

Therefore sum of the numbers in the unit place is = 6.1 + 6.2 + 6.3 + 6.4 = 60; 
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Total sum of the digits in the 10th place = 60  10 

Total sum of the digits in the 100th place = 60  100 

Total sum of the digits in the 1000th place = 60  1000 

Therefore total sum of all 24 numbers = 66,660. 

2.3.7 Example 

In how many ways 4 examinations can be scheduled within a six-day period 

so that no two examinations are scheduled on the same day? 

Solution: P(6, 4) = 6  5  4 as 4 examinations can be considered as 

distinct balls and 6 days as distinct boxes.  

2.3.8 Example 

Determine the number of 5-digit decimal numbers that contain no repeated 

digits and does not have a leading 0. 

Solution: There are 10 digits 

0, 1, 2, 3, 4, 5, 6, 7, 8, 9. 

 Here n = 10. We can form 5 digit numbers with no repeated digits in  

P(10, 5) = 10  9  8   7  6 = 30240 ways. 

Among these 30240 numbers there are – 

9  8  7  6 = 3024 numbers with leading 0. Thus there are  30240 – 3024 

= 27216, 5-digit numbers with no repetition and without leading zero.  

2.3.9 Example 

Suppose there are 6 boys and 5 girls. In how many ways can they sit  

(i) in a row? 

(ii) in a row if the boys and girls are each to sit together? 

(iii) in a row if the girls are to sit together and the boys do not sit together? 

(iv) where no two girls are sitting together? 
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Solution: 

(i) There are 6 + 5 = 11 persons and they can sit in P( 11, 11) = 11! ways. 

(ii) The boys among themselves can sit in 6! ways and the girls among 

themselves can sit in 5! ways. They can be considered as 2-units and 

can be permuted in 2! ways. 

  Thus the required seating arrangements can be in 2! 6! 5! ways. 

iii) The boys can sit in 6! ways and girls in 5! ways. Since girls have to sit 

together they are considered as one unit. Among the 6 boys either 0 or 

1 or 2 or 3 or 4 or 5 or 6 have to sit to the left of the girls unit. Of these 

seven ways, 0 and 6 cases have to be omitted as the boys do not sit 

together. Thus the required number of arrangements = 5  6!  5!. 

iv) The boys can sit in 6! ways. There are seven places where the girls 

can be placed. Thus total arrangements are P(7, 5)  6!.  

2.3.10 Example 

In how many ways can the letters of English alphabet be arranged so that 

there are exactly 5 letters between the letters a and b. 

Solution: 

There are P(24, 5) ways of arranging 5 letters between a and b; 2 ways to 

place a and b; and 20! ways to arrange any 7-letter word treated as one unit 

with the remaining 19 letters. Thus there are P(24, 5)  2  20! ways.  

2.3.11 Example 

Find the number of ways in which 5 boys and 6 girls can be seated in a row 

if the boys and girls are to have alternate seats. 

Solution:  

Case (i): Boys can be arranged among themselves in 5! ways. 

_B_B_B_B_B 

There are 6 places for girls. Hence there are P(6, 5)  5! arrangements.  

Case (ii) Girls can be arranged in 5! ways. 

_G_G_G_G_G_ 
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There are 6 places for boys. Hence there are P(6, 5)  5! ways.  

Hence taking the two cases into account, there are 2  P (6, 5)  5! 

arrangements,  in total.  

Self Assessment Question 

2. In how many ways can the letters of the word „SUNDAY‟ be arranged? 

How many of them begin with S and end with Y? How many of them do 

not begin with S but end with? 

2.4 Combinations 

The number of ways to select r objects from n distinct objects is called an r 

combinations of n objects and is denoted by C(n, r).  Observe C(n, 1) = n, 

C(n, n) = 1 and C(n, 0) = 1.   

The other notations are nCr and  
n

r

 
 
 

.   

(Refer: Section 2.5 for more on Binomial Coefficients) 

2.4.1 Theorem 

The r objects of each r-combination can be permuted among r! different r-

permutations, each of which corresponds to a single combination.  If the 

number or r-combinations of n objects without repetition (denoted by C(n, r)).  

Then  

C(n, r) = 
r)!- (n

n!
 

Proof: Any r permutations of n objects without repetition can be obtained by 

selecting r objects and then arranging the r objects in all possible orders. 

Selection can be made in C(n, r) ways and arrangements can be made in r! 

ways. 

Thus P(n, r) = r! C(n, r). 

This implies that C(n, r) = 
r!r)!- (n

n!
 =  









r

n
. 

Note that C(n – 1, r - 1) + C(n – 1, r) = C(n, r). 
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2.4.2 Problem 

How many ways may one right and one left shoe be selected from six pairs 

of shoes without obtaining a pair. 

Solution: Any one of the left shoe can be selected in six ways.  We have five 

choices for selecting a right shoe without obtaining a pair. Therefore, the total 

number of ways selecting one left and one right shoe is = 6  5 = 30 ways. 

2.4.3 Problem 

A new national flag is to be designed with six vertical strips in yellow, green, 

blue, and red.  In how many ways can this be done so that no two adjacent 

strips have the same color? 

Solution: The first strip can be selected in four different ways.  Since no two 

adjacent strips have the same color, the second strip can be selected in 

three different ways.  In a similar way, 3rd, 4th, 5th and 6th strips are selected 

in three different ways. Therefore, the total number of ways selecting the 

different colors in the strips are 4  3  3  3  3  3 = 4  35 = 972 ways.  

2.4.4 Problem 

(i) How many positive integers less than one million can be formed using 

7s, 8s and 9s only ? 

(ii) How many using 0s, 8s and 9s only ? 

Solution: 

(i) We find the number of integers used from 1 to 9,99,999. 

 Number of single digits (less than 10) are 7, 8, 9.  

 Number of integers formed using two digits are 3   3 = 32. 

 Similarly, number of integers with 3 digits is 3   3   3 = 33, …, the 

 number of integers with 6 digits is 36. 

 Therefore, the total number of positive integers less than 1 million 

 can be formed using 7, 8, 9 only = 3 + 32 + 33 + 34 + 35 + 36 = 1092. 
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(ii) Number of positive integers continuing one digit is 2 (zero is not 

considered); number of positive integers containing two digits = 2   31, 

and so on, number of positive integers containing six digits is 2   35. 

Therefore, the total number of integers containing 0, 8, 9 is  

 = 2 + 2(3 + 32 +…+ 35) = 728. 

2.4.5 Definition 

The permutations considered so far are called linear permutations as the 

objects are being arranged in a row (line). Suppose we arrange them in a 

circle, see the fig. 

 

Figure 2.1.:  Circular permutation. 

The arrangements are considered to be the same if the objects are in the 

same order clockwise. Therefore, keeping c1 in a fixed position there are  

(n -1)! arrangements for the remaining objects.  

2.4.6 Note 

There are (n-1)! permutations of n distinct objects in a circle. 

2.4.7 Example 

How many ways are there to seat 10 boys and 10 girls around a circular 

table? If boys and girls sit alternate, how many ways are there? 

Solution: There are total 19! seating arrangements. 10 boys can be arranged 

in 10! ways. There are 9 gaps for girls and can be placed in 9! ways. 

Thus, we have 10!  9! ways.  
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2.4.8 Theorem 

There are 2r subsets of a set A with r elements. 

Proof: Consider the problem of placing r elements of A in two boxes. 

Corresponding to each placement we can define a subset of A by taking the 

elements placed in box 1 and discarding the elements placed in box 2. 

Since there are 2r ways to place r elements, there are 2r subsets of A. That 

is P(A) contains 2r elements.  

2.4.9 Example 

Here are 2r, r-digit binary sequences. Out of these 2r sequences how many 

of them have even number of l‟s? 

Solution: Pair off these binary sequences such that two sequences in a pair 

differ only in the rth digit.  

Clearly one of the two sequences in a pair has even number of ls and other 

has odd number of ls. Hence there are,  

1

2
 2r = 2r-1  

r-digit binary sequences that contain even number of ls.  

2.4.10 Note 

Consider n objects of which m1 are first kind, m2 are of second kind, …., mk 

are of kth kind, then nm

k

1i

i 


.   

2.4. 11 Theorem 

The number of distinguishable permutations of n objects in which the first 

object appears in m1 times, second object in m2 ways, …. and so on,  

!!....mm!m

n!

k21

, 

 where mk is the kth object appears in mk times. 



Discrete Mathematics Unit 2 

Sikkim Manipal University Page No.: 45 

Proof: Let x be the number required. In permutation among x, make m1 all 

distinct. Since m1 objects can be permuted among themselves, one permutation 

will give rise to m1!. Therefore x permutations give x.m1! permutations.   

Now make m2 identical objects all distinct. Then we get xm1! m2! 

permutations of n objects in which m3 are alike, … mk are alike.   

Continuing this process we get xm1! m2! … mk! as the number of 

permutations of n objects of which are all distinct and hence equal to n!. 

Therefore – 

x =
!!....mm!m

n!

k21

. 

2.4.12 Example 

Find the number of different letter arrangements can be formed using 

“MATHEMATICS”. 

Solution: Total number of letters n = 11 (with repetitions) 

Number of Ms = 2 

Number of Ts = 2 

Number of As = 2.  

And the letters H, C, S, E, each is 1. 

Therefore the required number of permutations is 
1! 1! 1! 1! 2! 2! 2!

11!
=66, 52, 800. 

2.4.13 Example 

(a) In how many ways a committee of 3 be formed chosen from 10 people.  

(b) How many committees of 3 or more can be chosen from 10 people? 

Solution:  

(a) C(10, 3) ways 

(b) C(l0, 3) + C(l0, 4) + C(10, 5) + ... + C(10, 10), which is also equal to 

210-C(10, 1) C(l0, 2). 
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2.4.14 Example 

How many ways can 3 integers be selected from the integers 1, 2, 3, ..., 30 

so that their sum is even. 

Solution 

There are 15 odd integers 1, 2, 5, ..., 29 and 15 even integers 2, 4, 6, ..., 30. 

Sum of 3 integers will be even only if, 

(i) All the 3 are even. 

(ii) Two of them odd and one even. 

Hence, the total number of ways to select 3 integers out of the given 

 30 integers is  –  

   C(15, 3) + C(15, 2)C(15, 1) = 560  ways. 

2.4.15 Problem 

Find the number of subsets of a set with n elements, in a different way.  

Solution: The number of subsets with r ≤ n elements is given by C(n, r). 

Hence altogether there are 

C(n, 0) + C(n, 1) + ... + C(n, n) 

Subsets of A. But from binomial theorem, we have the number of subsets of 

a set with n elements as – 

C(n, 0) + C(n, 1) + ... + C(n, n) = 2n 

2.4.16 Example 

A multiple choice test has 15 questions and 4 choices for each answer. How 

many ways can the 15 questions be answered so that, 

(a) exactly 3 answers are correct? (b) at least 3 answers are correct? 

Solution 

(a) Exactly 3 answers are correct is 312 C(15, 3) 

(b) At least 3 answers correct are 415 - [315 + 314 C(15, 1) + 313C(15, 2)]. 
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2.4.17 Example 

A student is to answer 12 out of 15 questions in an examination. How many 

choices does the student have 

a) in all? 

b) if he must answer the first two questions. 

c) if he must answer the first or second question but not both. 

d) if he must answer exactly 3 of the first-five questions.  

e) if he must answer at least 3 of the first-five questions. 

Solution:  

(a) C(15, 12) ways 

(b) If the first-two questions are to be answered he has to select  

10 questions out of remaining 13. Thus, he has C(1 3, 10) choices.  

(c) If he answers the first question he could not choose the second 

question. So he has to choose 11 questions from the remaining  

13 questions. Hence he has C(13, 11) choices. Similarly, if he answers 

the second question he has C(13, 11) choices. Total number of choices  

= 2  C(13, 11). 

(d) To choose 3 from the first 5, he has C(5, 3) choices. Other 9 questions 

have to be chosen from the next 10 questions. He has C(l0, 9) choices. 

Thus in total he has           C(5, 3)C(10, 9) choices. 

(e) He can choose 3 from the first-five and 9 from the next 10 questions.  

Or, he can choose 4 from the first-five and 8 from the next 10 questions. 

Or, he can choose 5 from the first-five and 7 from the next 10 questions. 

Thus he has – 

 C(5, 3)C(10, 9) + C(5, 4)C(10, 8) + C(5, 5)C(10, 7) choices. 

2.4.18 Note (Combinations with repetitions): 

Suppose r selections are to be made from n items without regard to the 

order and that unlimited repetitions are allowed, assuming at least r-copies 

of n items.  The number of ways of these selection can be made is – 

C(n + r – 1, r) = 
1)!-(nr!

1)!-r(n 
. 
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2.4.19 Example 

The number of ways to choose 3 out of 7 days (repetitions allowed) is 

C(7 + 3 -1, 3) C(9, 3) = 84. 

2.4.20 Example 

When 3 dice are rolled, the number of different outcomes is – 

C(6 + 3 -1, 3) = 56 

as rolling 3 dice is same as selecting 3 (here r = 3) numbers from numbers  

1, 2, 3, 4, 5, 6, (here n = 6) with repetitions allowed.  

2.4.21 Example 

Find the number of ways to seat 5 boys in a row of 12 chairs using 

permutations and using combinations. 

Solution:  

(a) Using permutations:  

 The problem is to arrange 12 objects that are of 6 different kinds. 

 The 6 different objects are 5 boys and 7 unoccupied chairs (these 7 

 considered as a single object).  

 Thus the number of arrangements is – 

 
12! 12!

1!1!1!1!1!7! 7!
  

(b) Using combinations: Five boys can be arranged in a row in 5! ways.  

Distribute the 7 unoccupied chairs arbitrarily in 6 places (in the gaps 

between any two boys or at the two ends). Then the total number of 

ways =  

 5!  C(6 + 7 -1, 7) = 5!  C(12, 7) = 5!  
12!

5! 7!
 =  

12!

7!
. 

2.4.22 Example 

In how many ways can a lady wear five rings on the fingers (not the thumb) 

of her right hand? 
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Solution: There are five rings and four fingers. Five rings can be permuted 

in p(5, 5) ways. The number of unrestricted combinations of 4 objects taken 

5 at a time is – 













 

5

154
 = 















5

8
. 

Therefore, the total number of ways = 5! 














5

8
  = 6720.  

Self Assessment Questions 

3. a) Compute P(8, 5) and P(7, 4). 

(b) In how many ways can 10 people arrange themselves 

I. In a row of 10 chairs? 

II. In a row of 7 chairs? 

III. In a circle of 20 chairs? 

(c) In how many ways can 7 women and 3 men be seated in a row if  

the 3 men must always sit next to each other? 

(d) How many 5-digit even numbers can be formed using the figures 0, 

1, 2, 3, 5, 7 and 8 without using a figure more than once? 

4. Find the number of arrangements of the letters in the word: ACCOUNTANT 

5. How many different two digit positive integers can be formed from the 

digits:0, 1, 2, 3, 4, 5, 6, 7, 8, 9. (i) When repetition is not allowed,  

(ii) When repetition is allowed. 

 

2.5 Partitions and Binomial Coefficients  

2.5.1 Definition 

Let S be a set with n distinct elements, and let t be a positive integer. A  

t-partition of the set S is a set {A1, A2, ..., At} of t subsets of S, such that  

(i) S = A1  A2  ....  At 

(ii) Ai    Aj  =   (empty set) i  j 
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The subsets Ai, are called parts or cells or blocks of S. 

Note that (i) we will omit „t‟ and simply call partition. 

(ii) An ordered partition of S is a partition with a specified order on the 

subsets. 

2.5.2 Example 

For S = {a, b, c, d}; A1 = {a, b}, A2 = {c}, A3 = {d} form a 3-partition of S. Then 

(A1, A2, A3), (A1, A3, A2), (A2, A1, A3), (A2, A3, A1), (A3, A1, A2) and (A3, A2, A1) 

form 6 different ordered partitions of S using the subsets A1, A2, A3.  

2.5.3 Note 

An ordered partition of S is of type (q1, q2, ..., qt) if  Ai  = qi. That is., Ai 

contains qi elements. 

2.5.4 Example 

For the set S = {a, b, c, d), write A1 = {a), A2 {b}, A3 = {c, d}. Then     

(A1, A2, A3) is a partition.  This is of a type (1, 1, 2) partition. 

The following theorem gives the number of ordered partitions of a set. 

2.5.5 Theorem 

The number of ordered partition of a set with n elements of type (q1, q2, .., qt) is  

P(n, q1, q2, ..., qt) = 
1 2

!

! !... !t

n

q q q
. 

Proof: q1 elements of the first set can be chosen in C(n, q1) ways and  

q2 elements of the second set in C(n-q1, q2) ways etc. 

Thus the number of ordered partitions of type (q1, q2, ..., qt) is C(n, q1),  

C(n-q1, q2) … C(n- q1-q2 …-qt-1, qt), which is equal to P(n, q1, q2, …, qt). 

2.5.6 Example 

Let S = {a, b, c, d}. The number of ordered partition of type (1, 2, 1) is 

P(4, 1, 2, 1) = 
4!

1!2!1!
 = 12. 
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2.5.7 Example 

A store has 10 red flags, 5 white flags, 4 yellow flags and 6 blue flags. In 

how many ways can the flags be displayed? 

Solution: Total number of flags n = 25. They are partitioned into  

(10, 5, 4, 6) type ordered partitions. The number of such ordered partitions 

is – 

25!

10!5!4!6!
 

2.5.8 Theorem (unordered partitions): 

Let S be a set with n elements and n = qt. Then the number of unordered 

partitions of S of type (q1, q2, ..., qt) is  

1 !

! ( !)t

n

t q
 

Proof: Each unordered t-partition gives rise to t! ordered partitions. Hence 

the theorem follows.  

2.5.9 Example 

In how many ways 12 of the 14 people will be distributed into 3 teams of 4 

each? 

Solution: The number of ways where 12 people can be chosen from 14 is 

C(14, 12). Hence there are – 

C(14, 12) 
3

1 12!

3! (4!)
 

unordered (4, 4, 4) type partitions. 

2.5.10 Definition 

Let A1, A2, ..., An be subsets of S. Then a minset generated by A1, A2, …, An 

is of the form B1  B2  ...  Bn, where Bi, may be either Ai, or  

'
iA  (

'
iA  = S – Ai). 
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2.5.11 Theorem 

Let A1, A2, ..., An are subsets of S. Then the non-empty minsets generated 

by A1, A2, ..., An form a partition of S. 

Proof: Let A1, A2, ..., An are n subsets of S. Then there are k = 2n minsets 

M1, M2, …, Mk (generated by A1, A2, ..., An).  Further   

1

.
k

i

i

M S



  

Now let x  S. Then x  Ai or 
'
iA  for i = 1, 2, ..., n.  

Thus x will be in one of the minsets. Hence  

S = 

1

.
k

i

i

M



 

Hence M1, M2, ..., Mk form a partition of S. 

2.5.12 Example 

Let S = {1, 2, 3, ..., 9). Give a partition of S into minsets generated by  

A1 = {1, 2, 5), A2 = {5, 6, 8, 9) and A3 = {2, 3, 4}. 

Solution: We have  

'
1A  = {3, 4, 6, 7, 8, 9} 

'
2A = {1, 2, 3, 4, 7} 

'
3A  = {1, 5, 6, 7, 8, 9} 

M1 = A1  A2  A3 =  

M2 = 
'
1A   A2  A3 =  

M3 = A1  
'
2A   A3 = {2} 

M4 = A1  A2  
'
3A = {5} 

M5 = 
'
1A   

'
2A   A3 = {3, 4} 
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M6 =  
'
1A   2A   

'
3A = {6, 7, 8} 

M7 = A1  
'
2A   

'
3A = {1} 

M8 = 
'
1A   

'
2A   

'
3A = {7} 

form partition of S. 

2.5.13 Definition (Binomial theorem):  

Let n be a positive integer, we have – 

(a + b)n = an + nan-1b + 
  n(n-1)  

2!
an-2b2 + … + 

  n(n-1)(n - 2)(n - r +1)   

2!
 

an-rbr + … + bn. 

The coefficients are – 

C(n, 0), C(n, 1), ..., C(n, r), ..., C(n, n). 

These coefficients are called binomial coefficients, where; 

 
!

( , )
! !

n
C n r

r n r



 

2.5.14 Properties of binomial coefficients (Combinatorial Identities): 

An identity that results from some counting process is called a combinatorial 

identity. Some identities involving binomial coefficients are given below: 

1. C(n, 0) + C(n, l) + … + C(n, n) = 2n. 

2. 2.C(n, 1) + C(n, 3) +  …. = C(n,0) + C(n,2) + ….  = 2n-1. 

3. C(n, r)=C(n, n-r) 

4. Newton‟s Identity: C(n, r).C(r, k)=C(n, k).C(n-k, r-k) for integers n  r  k 0.  

5. Pascal Identity: C(n+ l, r) = C(n, r) + C(n, r-1) 

6. Vandermonde‟s Identity: 

  C(n + m, r) = C(n, 0). C(m, r) + C(n, 1). C(m, r- l) + … + C(n, r). C(m,0) 

 = 

0

C(m, r - k).C(n,k)
r

k

  for integers n  r  0 and m  r  0. 

 The combinatorial proofs of (3), (4) and (6) are given below and the 

 remaining identities left as exercises. 
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2.5.15 Problem 

Prove the identity C(n, r) = C(n, n - r): 

Proof (combinational version): 

If r objects are chosen from n objects there are n-r objects are left. Thus 

selection of r objects from n objects is the same as to pick out the n-r 

objects that are not to be selected. Hence, to every r-combination 

automatically there is an associated (n-r) combination and conversely. This 

proves the identity. 

2.5.16 Problem 

Prove the Pascal Identity  

C(n + 1, r) = C(n, r) + C(n, r-l) 

where n and r are positive integers with r  n. 

Proof: A choice of r of the n +1 objects x1, x2 , …, xn  may or may not 

include xn+1.  If it does not, then r objects have to be chosen from x1, x2 , …, 

xn  and there are C(n, r) such choices.  

If it does contain xn+1 then r-1 further objects have to be chosen from x1, x2 , 

…, xn  and there are C(n, r-1) such choices. So by the rule of sum, the total 

number of choices is C(n, r) + C(n, r-1) which must be equal to C (n + 1, r). 

Hence  

C(n + 1, r) = C(n, r)+ C(n, r-1). 

2.5.17 Pascal’s formula 

Pascal‟s formula gives a recurrence relation for the computation of Binomial 

coefficient, given the initial data C(n, 0) = C(n, n) = 1 for all n. Notice that no 

multiplication is needed for this computation. One can obtain the numbers 

by constructing a triangular array using very simple arithmetic. The 

triangular array is usually called Pascal’s triangle. One can label the rows of 

the triangular array by n = 0, 1, 2 and the positions within the nth row as  

k = 0, 1, 2, …, n. The zero row of the triangle is the single entry 1  and the 
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first row be a pair of entries each equal to 1. This gives the first two rows, 

The nth row of the triangle, which contains n + 1 numbers, can be formed 

from the preceding row by the following rules 

(a) The first (k = 0) and the last (k = n) entries are both equal to 1. 

(b) For l ≤ k ≤ n-l, the kth entry in the nth row is the sum of the (k-1)th and kth 

entries 

 in the (n -1) rows. 

 

Figure 2.2 

A basic property of binomial coefficients is illustrated by Pascal‟s triangle. If 

we evaluate th numbers, we can find that we obtain the same numbers as in 

the first six rows of Pascal‟s triangle. Each number in the triangle is the sum 

of the two numbers above it, i.e., the number just above i and to the right, 

and the number just above it and to the left.  
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For example, take n = 5 and k = 3, we have
5 4 4

3 3 2

     
      

     
, which is the 

particular case of Pascal‟s identity.  

Self Assessment Questions 

6. Let S = {1, 2, 3, 4, 5) and A1 = {2, 3, 4) and A2 = {3, 4, 5} are subsets of 

S. Find the partition of S into minsets generated by A1and A2. 

7. Let S = {l, 2, 3, 4, 5, 6); A1={2, 5, 6}, A2={1, 2, 3}, A3={1, 4, 6}. Find the 

partition of S into minsets generated by A1, A2 and A3. 

 

2.6 Principle of Inclusion and Exclusion 

For any two sets P and Q, we have ; 

i) |P  Q|   |P| + |Q| where |P| is the number of elements in P, and |Q| is 

the number elements in Q.  

ii) |P  Q|   min (|P|,  |Q|) 

iii) |P  Q| = |P| + |Q| – 2|P  Q| where   is the symmetric difference. 

2.6.1 Theorem 

Let A1 and A2 be two sets.  Then |A1  A2| = |A1| + |A2| – |A1  A2|. 

This can be extended to any finite number of sets, which is known as 

principle of inclusion and exclusion. 

2.6.2 Theorem 

If A1, A2, …, An are finite sets, then |A1  A2  …  An| = 


n

1i

i |A|                          

- |AA| ji

nji1




 + 




nkji1

kji |AAA| +…. + (-1)n-1|A1  A2  …. An|. 
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2.6.3 Example 

Thirty cars were assembled in a factory. The options available were a radio, 

an air conditioner, and white wall-tires. It is known that 15 of the cars have 

radios, 8 of them have air conditioners, and 6 of them have white wall-tires.  

Moreover, 3 of them have all three options. Find out “at least how many cars 

don‟t have any options at all”. 

Solution: Let A1, A2 and A3 denote the sets of cars with the given options 

respectively. 

|A1| = 15, |A2| = 8, |A3| = 6,  |A1  A2  A3| = 3. 

Now by the principle of inclusion and exclusion, 

 |A1  A2  A3| = 15 +8 + 6 – |A1  A2|  –  |A1  A3| – |A2  A3| + 3 

                        = 32 – |A1  A2| – |A1  A3| – |A2  A3|   

   32 – 3 – 3 – 3 = 23         (since |Ai  Aj  Ak|  |Ai  Aj|  for any i, j,  k) 

Therefore there are at most 23 cars with one or more options. This means 

there are at least 7 cars that do not have any options. 

2.6.4 Example 

Determine the number of integers between 1 to 250 that are divisible by any 

of the integers 2, 3, 5 and 7. 

Solution: Write A1 = {x  Z+ / x  250 and x is divisible by 2} 

Similarly A2, A3, A4 are set of integers  250 that are divisible by 3, 5 and  

7 respectively. 

|A1| = 








2

250
= 125 where  x  denotes the integer smaller than or equal to x. 

|A2| = 








3

250
= 83, |A3| = 









5

250
= 50, |A4| = 









7

250
= 35,  
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|A1  A2|  = 








 32

250
= 41,  |A1  A3| = 









 52

250
= 25,  |A1  A4| = 17,  |A2  A3| 

= 16,  |A2  A4 | = 11,  |A3  A4| = 7, |A1  A2  A3| = 








 532

250
= 8,  

|A1  A2  A4 |=5, |A1  A3  A4 |=3, |A2  A3  A4 | = 2, |A1  A2  A3  A4 | = 1. 

Therefore |A1  A2  A3  A4 | = 125 + 83 + 50 + 35 – 41 – 25 – 17 – 16 – 

11 – 7 + 8 + 5 + 3 + 2 – 1 = 193. 

2.6.5 Example  

How many arrangements of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 contain at 

least one of the patterns 289, 234 or 487? 

Solution: Let A289 be the event of having pattern 289. Similarly A234 and A487. 

We have to find |A289 or A234 or A487|. 

Now |A289| = 8, as 289 considered as a group, which is a single object and 

the remaining seven single digits.  Similarly |A234| = |A487| = 8! 

Also since 2 cannot be followed by both 3 and 8, we have |A289  A234| = 0. 

Similarly |A289  A487| = 0.  But 

 |A234 or A487| = 6 , since 23487 as a single object  and remaining 5 single 

objects.  

 |A289  A234  A487| = 0. 

Therefore, by the principle of inclusion and exclusion – 

|A289  A234  A487| =  8  + 8  + 8 - 0 – 0 – 6  + 0 = 3  8  - 6 . 
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2.6.6 Note 

Among the permutations of {1, 2, 3, …., n}, there are some (called 

derangements), in which none of the n integers appears in its natural place.   

In otherwords: (i1, i2, …, in) is a derangement if i1 ≠ 1, i2 ≠ 2, …. , and  in ≠ n.   

If „Dn’ denote the number of derangements of {1, 2, 3, …., n}, then  for n = 1, 

2, 3, we have,   

D1 = 0, 

D2 = 1,  

D3 = 2 (that is, the only derangements of (1, 2, 3) are (2, 3, 1) and (3, 1, 2)). 

2.6.7 The formula for Dn for any positive integer n,  

Let U be the set of n! Permutations of {1, 2, 3, … , n}. 

For each i, let Ai be the permutation (b1, b2, …., bn) of {1, 2, 3, …., n} such 

that bi = i.  

Then A1 = {(1, b2, …, bn) / (b2, b3, …. bn) is a permutation of {2, 3, …, n}}. 

Therefore |A1| = (n –1)!.  In a similar way |Ai| = (n –1)! for each i. 

Also A1  A2 = {(1, 2, b3, …, bn) / (b3, b4, …, bn) is a permutation of  

{3, 4, …, n}}. Therefore |A1  A2| = (n –2)!. 

In a similar way, |Ai  Aj| = (n – 2)! for all i, j. Therefore, for any integer k,  

1  k  n. 

|A1  A2  ….  Ak| = (n – k)!. 

This is true for any k-combination of {1, 2, …. , n}. 
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Therefore Dn = n21 A....AA    

                     =  
n21 A....AA    

= |U| – |A1  A2  ….  An|        

                      =  n! – C(n, 1)(n – 1)! + C(n, 2)(n – 2)! + …. + (-1)n C(n, n) 

           = n! – 
!1

!n
 + 

!2

!n
 – 

!3

!n
 + …. + (–1)n

!n

!n
 

          = n! 












 


!n

)1(
....

!3

1

!2

1

!1

1
1

n

  

                    = n!e-1, if n  is very large. 

2.6.8 Example 

Let n books be distributed to n students. Assume that the books are returned 

and distributed to the students again later on.  In how many ways can the 

books be distributed so that no student will get the same book twice? 

Solution: First time the books are distributed in n! ways;  since no student 

gets the same book that he got first time, the second time Dn ways.   

Therefore the total number of ways: 

n! Dn = n! n! 









!n

1
)1(....

!3

1

!2

1

!1

1
1

n
 = (n!)2  











!n

1
)1(....

!3

1

!2

1

!1

1
1

n
. 

Self Assessment Questions  

8. Find the number of derangements of the integers from 1 to 10 inclusive, 

satisfying the condition that the set of elements in the first 5 places is –                                         

(i) 1, 2, 3, 4, 5 in some order; 

(ii) 6, 7, 8, 9, 10 in some order. 
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2.7 Summary  

In this unit, we studied the basic principles of counting. Techniques for 

counting are important in computer science especially in probability theory 

and in the analysis of algorithms.  Some illustrations on permutations and 

combination with distinct objects are given.  These are also useful in graph 

theoretical algorithm.  Further we studied the partitions, binomial coefficients 

and the principle of inclusion and exclusion with some applications.  

 

2.8 Terminal Questions  

1. How many numbers between 4000 and 6000 can be formed by using 

the integers 1, 2, 3, 4, 5, 6, 7 and 8 if any integer is not used more 

than once? 

2. There are 6 books on mathematics, 3 on computer science, and 5 on 

electronics. In how many ways can these be placed on a shelf if books 

on the same subjects are to be together? 

3. Six papers are set in an examination of which two are mathematics. In 

how many ways can the examination papers be arranged if the 

mathematics papers are not to be together? 

4. Find the number of different arrangements that can be made out of the 

letters of the word „TRIANGLE‟ if the vowels are to come together. 

5. How many 4 – digit numbers can be formed by using 2, 4, 6, 8 when 

repetition of  digits is allowed? 

6. In how many ways can 4 prizes be distributed among 5 persons when 

(i) No person gets more than 1 prize  

(ii) A person may get any number of prizes.   

(iii) A person gets all the prizes.   
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7. Out of 15 boys and 9 girls, how many different committees can be 

formed each consisting of 6 boys and 4 girls? 

8. How many cards must you pick up from a standard 52 card deck to be 

sure of getting at least one red card.  

9. A dice is rolled thrice; find the numbers of different outcomes. 

10. A bag contains 5 red marbles and 6 white marbles. Find the number of 

ways of selecting 4 marbles such that 2 are red and 2 are white. 

11. There are 12 points P1, P2, ..., P12 in the plane, no three of them on the 

same line. 

(a) How many triangles can be formed? 

(b) How many of the triangles contain the point P1 as a vertex? 

12. How many diagonals are there in a regular polygon of n sides? 

13. How many ways can 5 days be chosen from each of the 12 months of 

an ordinary year of 365 days? 

 

2.9 Answers 

Self Assessment Questions  

1. a) 27 

b) 263
 104 

c) 10  9  8 = 720 

d) 6100 

e) 100 + (100  99) 

2. The word SUNDAY consists of 6 letters, which can be arranged in  

 P (6, 6) = 6! = 720 ways.  If „S‟ occupies first place and Y occupies 

 last place, then other four letters U, N, D, A can be arranged in 4! = 

 24 ways.  
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 If S does not occupy the first place but Y occupies last place, the first 

 place can be occupied in 4 ways by any one of U, N, D, A.  

 For the second place, again 4 letters are available, including S.  The 3rd, 

 4th and 5th places can be filled by 3, 2, 1 ways.  

 Hence the required number of arrangements = 4  4  3  2  1 = 96. 

3. a) 6720, 840 

b) I) 10!,  II)  P(10, 7), III)  9!. 

c) 3! 8! 

d) 1080 (allowing leading zero).  

4. The number of arrangements =
!1!2!2!2!2

!10
 = 226800. 

5. (i) 90, (ii)100. 

6. M1 = {3, 4}, M2 = {2}, M3 = {5}, M4 = {1} form a partition into mun-sets. 

7. M1 = {2}, M2 = {6}, M3 = {5}, M4 = {1}, M5 = {4}, M6 = {3} form a partition 

into min-sets. 

8. (i). D5.D5 ways; (ii) (5!)2 = 14,400 derangements. 
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Unit 3 Recurrence Relations  

Structure 

3.1 Introduction 

 Objectives 

3.2 Recurrence Relation 

3.3 Particular Solution 

3.4 Generating Functions 

3.5 Applications of Recurrences  

3.6 Integer Functions 

3.7  Summary 

3.8 Terminal Questions 

3.9 Answers 

 

3.1 Introduction 

A sequence can be defined by giving a general formula for its nth term or by 

writing a few of its terms. An alternative approach is to represent the 

sequence by finding a relationship among its terms.  Such relations are 

referred as recurrences. Recurrence relations are used to model a wide 

variety of problems both in computer and non-computer sciences.  In this 

unit, we provide a few applications of recurrences and a brief explanation of 

the integer functions. 

 

Objectives:   

At the end of the unit, you would be able to: 

 solve recurrences. 

 use the  generating functions to solve the recurrence relations. 

 know the applications of recurrence relations. 

 learn the integer function. 
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3.2 Recurrence Relation 

A recurrence relation for the sequence {an} is an equation that expresses  

an in terms of one or more of the previous terms of the sequence, namely  

a0, a1, …, an – 1 for all integers n with n  n0, where n0 is a non negative 

integer.   

A sequence is called a solution of a recurrence relation if its terms satisfy 

the recurrence relation. 

3.2.1 Example 

Let {an} be a sequence that satisfies the recurrence relation an=an – 1-  an – 2 for 

n=2, 3, 4, …and suppose that a0=3 and a1=5, what are a2 and a3 ? 

Solution: From the recurrence relation a2 = a1 – a0 = 5 – 3 = 2 and                                             

a3 = a2 – a1 = 2 – 5 = - 3. In a similar way we can find a4, a5 and also each 

successive term. 

3.2.2 Example 

Determine whether the sequence {an} is a solution of the recurrence relation 

an = 2 an – 1- an – 2 for n = 2, 3, 4, … where  

(i)  an = 3n for every non negative integer n, and 

(ii)  an = 2n 

Solution 

(i) Suppose that an = 3n for every non negative integer n. 

 For n  2, we have that 2an – 1 – an – 2 = 2[3(n - 1)] – 3(n - 2) = 3n = an. 

 Therefore {an}, where an = 3n, is a solution of the recurrence relation. 

(ii) Suppose an = 2n for every non negative integer n.  Now a0 = 1, a1 = 2, 

a2 = 4.  Consider 2a1 – a0 = 2.2 – 1 = 3 ≠ a2.  Therefore {an}, where  

an = 2n is not a solution of the recurrence relation. 
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3.2.3 Definition 

A recurrence relation of the form C0ar + C1ar – 1 + C2ar – 2 + … + Ckar – k = f(r), 

where Ci’s are constants, is called a linear recurrence relation with constant 

coefficients. Here, if both C0 and Ck are non-zero, then it is known as  

kth order recurrence relation. 

3.2.4 Example 

2ar + 3ar – 1 = 2r is the first order linear recurrence, with constant coefficients. 

3.2.5 Fibonacci sequence 

The sequence of the form {1, 1, 2, 3, 5, 8, 13, …} is called the Fibonacci 

sequence. This sequence starts with the two numbers 1, 1 and contains 

numbers that are equal to the sum of their two immediate predecessors.  

The recurrence relation can be written as ar = ar – 1 + ar – 2, r  2, with a0 = 1 

and a1 = 1. 

3.2.6 Note 

an = rn, where r is constant, is a solution of the recurrence relation                    

an = C1an – 1 + C2an – 2 + …. + Ckan – k 

if and only if 

rn = C1r
n – 1 + C2r

n – 2 + … + Ckr
n – k. 

Dividing both sides by rn – k and the right hand side is subtracted from the 

left, we obtain the equation 

rk – C1r
k – 1 – C2r

k – 2 - …. – Ck – 1r – Ck = 0 ………….(i). 

Therefore, the sequence {an} with an = rn is a solution if and only if r is a 

solution of the equation (i) Equation (i) is called the characteristic equation 

of the recurrence relation. 

3.2.7 Theorem 

Let C1 and C2 be real numbers. Suppose that r2 – C1r – C2 = 0 has two 

distinct roots r1 and r2.  Then the sequence {an} is a solution of the 

recurrence relation an = C1an – 1 + C2an – 2 if and only if an = α1
nr1  + α2

nr2  for n 

= 0, 1, 2, ... where α1 and α2 are constants.   
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3.2.8 Example 

Find the solution of the recurrence relation an = an – 1 + 2an – 2 with a0 = 2 and 

a1 = 7. 

Solution: The characteristic equation of the recurrence relation is  

r2 – r – 2 = 0.   

Its roots are r = 2 and r = -1.   

Therefore, the sequence {an} is a solution to the recurrence if and only if  

an = α12
n + α2(-1)n, 

for some constants α1 and α2.  Now  

a0 = 2 = α1 + α2, a1 = 7 = α1 = 3 and α2 = -1. 

Therefore, the solution to the recurrence relation is an = 3.2n – (-1)n. 

3.2.9 Theorem 

Let C1 and C2 be real numbers with C2 ≠ 0.  Suppose that r2 – C1r – C2 = 0 

has only one root r0.  A sequence {an} is a solution of the recurrence relation                         

an = C1an – 1 + C2an – 2 if and only if an = α1
n

0
r  + α2n

n

0
r , for n = 0, 1, 2, …, 

where α1 and α2 are constants. 

3.2.10 Example 

Find the solution of the recurrence relation an = 6an – 1 – 9an – 2 with the initial 

conditions a0 = 1 and a1 = 6. 

Solution: The characteristic equation r2 – 6r + 9 = 0.  The only root is r = 3.  

Therefore, the solution to the recurrence relation is an = α13
n + α2n3n, for 

some constants α1 and α2.  

Using the initial conditions, we get a0 = 1 = α1, a1 = 6 = α1.3 + α2.3.  

Solving these simultaneous equations, we get α1 = 1 and α2 = 1.   

Therefore, the solution to the recurrence relation is an = 3n + n3n. 
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3.2.11 Theorem 

Let C1, C2, …, Ck be real numbers. Suppose that the characteristic equation 

rk – C1r
k – 1 - … – Ck = 0 has k distinct roots r1, r2, …, rk.  Then a sequence 

{an} is a solution of the recurrence relation an = C1an – 1 + C2an – 2 + …. + Ckan – k 

if and only if an = α1
nr1  + α2

nr2  + … + αk
n

kr , for n = 0, 1, 2, ..., where  

α1, α2, …, αk are constants. 

3.2.12 Example 

Find the solution to the recurrence relation an = 6an – 1 – 11an – 2 + 6an – 3 with 

initial conditions: a0 = 2,  a1 = 5  and a2 = 15. 

Solution: The characteristic equation of the given recurrence relation is            

r3 – 6r2 + 11r – 6 = 0  (r -1)(r - 2)(r - 3) = 0. 

The roots of this equation r =1, r = 2, r = 3.  

Therefore, the solutions to this recurrence relation are an = α1.1
n + α2.2

n + α3.3
n.   

From the given initial condition, a0 = 2, we get  

a0 = 2 = α1 + α2 + α3. Similarly, for a1 = 5 = α1 + α2.2 + α3.3; a2 = 15 = α1 + 

α2.4 + α3.9.   

Solving the above three simultaneous equations we get  

α1 = 1, α2 = -1 and α3 = 2. Therefore the unique solution to this recurrence 

relation is an = 1–2n + 2.3n. 

3.2.13 Theorem 

Let C1, C2, …, Ck be real numbers. Suppose that the characteristic equation 

rk – C1r
k – 1 - … – Ck = 0 has t-distinct roots r1, r2, …, rt with multiplicities                

m1, m2, …, mt, respectively, so that mi  1, for i = 1, 2, …, t and m1 + m2 + … 

+ mt = k.  Then a sequence {an} is a solution of the recurrence relation  

an = C1an – 1 + C2an – 2 + … + Ckan – k if and only if an = (α1,0 + α1,1.n + …. + 

11m
11m,1 n


 )

n

1
r  + … + (αt,0 + αt,1n + … + 

1tm
1tm,t n


 )

n

t
r , for   n = 0, 

1, 2, …, where αi, j are constants for 1  i  t and 0  j  mi –1. 
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3.2.14 Example 

Find the solution to the recurrence relation an = -3an – 1 – 3an – 2 – an – 3 with 

initial conditions a0 = 1, a1 = -2 and a2 = -1. 

Solution: The characteristic equation to the given recurrence is – 

r3 + 3r2 + 3r + 1 = 0 

 (r + 1)3 = 0. 

Therefore, r = -1 is a root of multiplicity 3.   

By Theorem 3.2.13, the solutions are of the form an = α1,0(-1)n + α1,1.n(-1)n + 

α1,2.n
2(-1)n. Use the given initial conditions, find the constants α1,0, α1,1, α1,2. 

Now a0 = 1 = α1,0; a1 = -2 = -α1,0 – α1,1 – α1,2; a2 = -1 = α1,0 + 2α1,1 + 4α1,2. 

Solving these simultaneous equations, we get α1,0=1, α1,1=3, and  α1,2 = -2.  

Hence the unique solution to the given recurrence is an = (1 + 3n – 2n2)(-1)n. 

 

3.3 Particular Solution  

The particular solution depends on the form of f(r). The particular solution for 

some simple functions f(r) is given in the following table. 

Table 3.1 

f(r) Particular solution 

Constant k Constant P if k is not a root of the characteristic 
equation.  If k is a root of multiplicity m then Pr

m
. 

Polynomial of degree t  
in r, F1r

t
 +          

F2r
t-1

+…+ Ft+1
r
 

Polynomial of degree t in r, P1r
t
 + P2r

t-1
 + … + Pt+1P

r
 if  

is not a root of the characteristic equation.  If  is a root 

of multiplicity of m, then Pr
m


r
. 

(F1r
t
 +  F2r

t-1
+…+ Ft+1)

r
 

 

(P1r
t
 + P2r

t-1
 + … + Pt+1)

r
 if   is not a root of the 

characteristic equation. 

r
m
(P1r

t
 + P2r

t-1
 + … + Pt+1)

r
 if  is a root of multiplicity m. 

 

3.3.1 Note 

The total solution of a recurrence relation is the sum of the homogeneous 

solution and the particular solution. The arbitrary constants in the 

homogeneous solution can be determined using boundary conditions. 
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3.3.2 Example 

Solve an -5an-1 + 6an-2 = 1 

Solution: The characteristic equation is r2 - 5r + 6 = 0.  The roots are 3, 2. 

The homogeneous solution is A1(3)n + A2(2)n . 

Particular solution of the form P, substituting in the given relation, we get  

P-5P + 6P = 1 or P = 
1

2
. 

Therefore, the total solution is an = A1(3)n + A2(2)n +  
1

2
. 

3.3.3 Example 

Solve an - 4an-1 + 4an-2 = (n +1)2 given a0 = 0 and a1 = 1. 

Solution: The characteristic equation is r2 - 4r + 4 = 0.  The roots are 2, 2. 

Therefore, the homogeneous solution is (A1n + A2)2
n. 

Particular solution is of the form P1n
2 + P2n + P3.  

Substituting in the given relation, we get 

P1n
2 + P2n + P3 – 4 P1(n-1)2 – 4P2(n-1) – 4P3 + 4P1(n-2)2 + 4P2(n-2) + 4P3 = 

n2 + 2n + 1. 

That is., 

P1n
2 + (P2 - 8P1)n +(P3 - 4P2 +12P1) =  n2 + 2n + 1. 

Equating the coefficients, we obtain  

P1 = 1, P2 - 8P1 = 2, P3 - 4P2 +12P1 = 1. 

Hence P1 = 1, P2 = 10, P3 = 29.  

Therefore, the total solution is – 

an  = (A1n + A2)2
n + n2 + 10 n + 29. 

Given that a0 = 0 and a1 = 1, we get  

0 = A2 + 29  A2 = -29 

and  

1 = (A1 + A2)2 + 1 + 10 + 29  A1 = 
19

2
. 
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Therefore, the total solution is – 

an = (
19

2
n-29)2n + n2 + 10 n + 29. 

3.3.4 Example 

Solve an - 3an-1 - 4an-2 = 3n given a0 = 0 and a1 = 2. 

Solution: The characteristic equation is r2 - 3r - 4 = 0. The roots are -1, 4.  

Therefore, the homogeneous solution is A1(-1)n  + A24
n. 

Particular solution is of the form P3n. Also 3 is not a root of the characteristic 

equation. Hence substituting an = P3n in the given equation, we get 

P3n - 3P3n-1 +– 4 P3n-2 = 3n. 

This implies that P =
9

4
 . Hence the total solution is,  

an = A1(-1)n + A2(4)n 
9

4
 3n. 

Further a0 = 1 and a1 = 2. Then,  

1 = A1 + A2

9

4
 ; 2 = A1 + 4A2

27

4
 . 

We get A1 =
17

20
, A2 = 

12

5
.  Therefore, the total solution is  – 

an = 
17

20
(-1)n + 

12

5
(4)n - 

9
(3)

4

n . 

3.3.5 Example 

Solve an - 4an-1 + 4an-2 = 2n 

Solution: Characteristic equation is r2 – 4r + 4 = 0.  

The roots are 2, 2. Homogeneous solution is of the form (A1n + A2)2
n. Since 

2 is a double root of the characteristic equation, the particular solution is of 

the form Pn22n. Substituting in the given relation, we get, 

Pn22n – 4P(n- 1)2 2n-1 + 4P(n-2)22n-2 = 2n. 
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That is, 2P2n = 2n which implies P = 1/2. Thus particular solution is – 

1

2
 n2 (2)n = (2)n-1 

Hence the total solution is an = (A1n + A2)2
n + n2 (2)n-1. 

3.3.6 Example 

Solve an -2an-1 = (n + 1)2n. 

Solution: Characteristic equation is r2 – 2r = 0. The roots are 0, 2. The 

homogeneous solution is A(2)n. Since 2 is a root (multiplicity 1) of the 

characteristic equation, the particular solution is of the form n(P1n + P2)2n. 

Substituting, 

n(P1n + P2)2
n - 2{(n-1)[P1(n -1) + P2]}2

n-1 = (n +1)2n. 

That is., (2P1n + P2 – P1)2
n = (n +1)2n 

Equating the coefficients, we get, 

P1 = 
1

2
 and P2 = 

3

2
. 

Thus particular solution is,  

1 3
2

2 2

nn n
 

 
 

 and P2 = 
3

2
. 

Hence the total solution is An = A(2)n + (n2 + 3n)2n-1. 

Self Assessment Questions  

1. Solve the recurrence relation an = 5an-1 – 6an-2,  n  2, given a0 = 1, a1 = 4. 

2. Solve the recurrence an = 4an-1–4an-2, n  2 with initial conditions a0 =1, a1 = 4. 
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3.4 Generating Functions   

A generating function is a polynomial of the form  f(x) = a0 + a1x + a2x
2 + … 

+anx
n+…, which has infinitely many non-zero terms. There is a correspondence 

between generating functions and sequences. 

(That is,  a0 + a1x + a2x
2 + …  a0, a1, a2, ….). 

3.4.1 Example 

(i) The generating function of the sequence 1, 2, 3,… of natural numbers 

is f(x) = 1 + 2x + 3x2 + …. 

(ii) The generating function of the arithmetic sequence 1, 4, 7, 10,… is          

          f(x) = 1 + 4x + 7x2 + 10x3 + …. 

3.4.2 Note 

Let f(x) = a0 + a1x + a2x
2 + … and g(x) = b0 + b1x + b2x

2 + … be two 

generating sequences, then f(x) + g(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x
2 + 

… and  f(x)g(x) = (a0b0) + (a1b0 + a0b1)x + (a0b2 + a1b1 + a2b0)x
2 + …, the 

coefficient of xn in the product f(x)g(x) is the finite sum: a0bn + a1bn – 1 +  

a2bn – 2 + … + anb0. 

3.4.3 Example 

If f(x) = 1 + x + x2 + … + xn + … and g(x) = 1 – x + x2 – x3 +…                       

+ (-1)nxn + …, then  

f(x) + g(x) = (1 + 1) + (1 -1)x + (1 + 1)x2 + … + (1 + (-1)n)xn + …   

                 =  2 + 2x2 + 2x4 + … 

f(x)g(x) = 1 + [1(-1) + 1(1)]x + [1(1) + 1(-1) + 1(1)]x2 + … 

  = 1 + x2 + x4 + x6 + … 

3.4.4 Problem 

Solve the recurrence relation an = 3an – 1, n  1, a0 = 1 using generating 

function. 
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Solution: Consider the generating function f(x) = a0 + a1x + a2x
2 + … + anx

n 

+ … of the sequence a0, a1, a2 … 

3x.f(x) = 3a0x + 3a1x
2 + … + 3an – 1x

n + … 

f(x) – 3x.f(x) = a0 + (a1 – 3a0)x + (a2 – 3a1)x
2 + …. + (an – 3an - 1)x

n + … 

Since a0 = 1, a1 = 3a0 and in general, an = 3an – 1, we get (1 – 3x) f(x) = 1 

 f(x) = 
x31

1


 = (1 – 3x)-1 = 1 + 3x + (3x)2 + … + (3x)n + … 

Therefore an, which is the coefficient of xn in f(x), is equal to 3n. 

3.4.5 Problem 

Solve the recurrence relation an = 2an-1 – an-2,  n  2, given a0 = 3, a1 = -2 

using the generating function. 

Solution: Let f(x) = a0 + a1x + a2x
2 + … + anx

n + … 

                   2xf(x) = 2a0x + 2a1x
2 + … + 2an-1x

n + … 

                    x2f(x) = a0x
2 + … +  an-2x

n + … 

Therefore,  

f(x) – 2xf(x) + x2f(x) = a0 + (a1 – 2a0)x + (a2 –2a1+ a0)x
2 + … + (an – 2an-1 + 

an-2)x
n + …  

= 3 – 8x (since a0 = 3, a1 = -2 and an – 2an-1 + an-2 = 0 for n  2). 

On simplification, we get f (x) = 
 2

x1

1


(3 – 8x) 

                                                =  ( 1 + 2x+ 3x2 + … + (n+1) xn + …)(3 – 8x) 

                                                =  3 – 2x – 7x2 – 12x3 + … + (-5n + 3)xn + …. 

Therefore, the coefficient of xn, that is.; an = 3 –5n is the solution. 
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3.4.6 Table of some generating functions 

Table 3.2 

Sequence Generating Function 

1 1

1 z
 

(-1)
r
 1

1 z
 

a
r
 1

1 az
 

(-a)
r 

1

1 az
 

r + 1 

2

1

1 ( )z
 

r 

2(1 )

z

z
 

r
2 

3

(1 )

(1 )

z z

z




 

ra
r 

2(1 )

az

az
 

1

!n
 

e
z 

C(n, r) (1+z)
r 

3.4.7 Example 

Solve the recurrence relation ar -7ar-1 + l0ar-2 = 0 for n  2 given that a0 = 10, 

a1 = 41 using generating functions. 

Solution: Multiplying the given equation by zr and summing from 2 to , we get 

1 2

2 2 2

7 10 0r r r
r r r

r r r

a z a z a z
  

 

  

      

 [A(z) – a0 –a1z] – 7z [A(z) – a0] + 10 z2 [A(z)] = 0 
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 [A(z) - a0 - a1z] — 7z[A(z) - a0] + 10z2[A(z)] = 0 

 A(z) = 0 1 0
2

( 7 )

1 7 10

a a a z

z z

 

 
 

             =  0 1 0( 7 )

(1 2 )(1 5 )

a a a z

z z

 

 
 

             = 1 2

1 2 1 5

C C

z z


 
 

            = 1 2

0 0

2 5r r r r

r r

C z C z
 

 

   

Thus ar = C12
r + C25

r, r  2.  

Given that a0 = 10, a1 = 41. Substituting, we get C1 = 3, C2 = 7. Thus ar = 

3.2r + 7.5r. 

3.4.8 Example 

Solve ar -5ar-1 + 6ar-2 = 2r + r, where r  2, with a0 = 1, a1=1. 

Solution: Multiplying the given equation by zr and summing from 2 to , we 

get    

1 2

2 2 2 2 2

5 6 2r r r r r r
r r r

r r r r r

a z a z a z z rz
    

 

    

         

 [A(z) – a0 –a1z] – 5z [A(z) – a0] + 6z2 [A(z)] = 
24 1

1
1 2 (1 )r

z
z

z z

 
  

  
 

Therefore, A(z) = 

2 4

2 2

1 8 27 35 14
.

(1 ) (1 2 ) (1 3 )

z z z

z z z

   

  
 

By substituting a0 = 1, a1 = 1, we get,  

A(z) = 
2 2

5/ 4 1/ 2 3 2 17 / 4

1 1 2 (1 3 )(1 ) (1 2 )z z zz z
   

   
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Thus, we have   

ar = 
5 1 17

( 1) 3 2 2( 1)2
4 2 4

r rr r        = 
15 17

2 5 2 3
4 2 4

r r rr
r       

3.4.9 Example 

Solve the recurrence relation corresponding to the Fibonacci sequence an = 

an – 1 + an – 2, n  2, a0 = 0 and a1 = 1.   

Solution: We get  

1 2

2 2 2

0r r r
r r r

r r r

a z a z a z
  

 

  

     . 

 [A(z)-a1z-a0]-z[A(z)-a0]-z
2A(z) = 0 

 A(z)[1-z-z2] = a0 + (a1-a0)z  = 0 

Substituting a0 = 1 and a1 = 1, we obtain 

A(z) = 
2 2

1 (1 1) 1

1 1

z

z z z z

 


   
 = 

1

1 5 1 5
1 1

2 2
z z

   
   

  

   

=  1 2

1 5 1 5
1 1

2 2

C C

z z


 

 

.  Here 

C1 = 
1 1 5

25


, C2 = 

1 1 5

25


  

Hence ar = 

1 1
1 1 5 1 1 5

2 25 5

r r 
    

      
   

. 

Self Assessment Question 

3. If f(x) = 1 + x + x2 + …., + xn + … and g(x) = 1 – x + x2 – x3 + … + (-1)nxn 

+ …. 

  Find f(x) + g(x), and f(x).g(x). 
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3.5 Applications of Recurrences 

3.5.1 The Problem of tower of Hanoi 

Given a tower of eight disks, initially stacked in decreasing size on one of 

the three pegs. The objective is to transfer  the entire tower to one of the 

other pegs, moving only one disk at a time and never moving a larger on to 

smaller (these rules are called Lucas Rules) (This was invented by the 

French mathematician Edouard Lucas in 1883). 

Let Tn be the minimum number of moves that will transfer n disks from one 

peg to another under Lucas rules.  Then clearly T0 = 0, since no moves are 

needed to transfer a tower of n = 0 disks. 

By observation, T1 = 1, T2 = 3 

 

 

 

 

 

 

 

 

Figure 3.1 

 

Now transfer the top disks to the middle peg, then move the third, then bring 

the other two onto it.  So we get, 

T3 = 7 = 2.3 + 1 = 2 T2 + 1. 

Induction hypo: Assume for n-1 disks.  That is., Tn-1 = 2.Tn-2 + 1. 

Suppose that there are n-disks.  We first transfer the (n-1) smallest disks to 

a different peg.  It requires Tn-1 moves. 

 

A 

C 

B 
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Then move the largest (it requires one move), and finally transfer the (n-1) 

smallest disks back onto the largest (it requires another Tn-1 moves). 

Thus we can transfer n disks (n > 0) in at most 2 Tn-1 + 1 moves. 

Thus Tn  2 Tn + 1 for n > 0. 

This shows that 2Tn-1 + 1 moves are sufficient for our construction. 

Next we prove that 2Tn-1 + 1 moves are necessary. 

We must move the largest disk. When we do, the n-1 smallest disks must be 

on a single peg, and it has taken atleast Tn-1 moves to put them there (we 

might move the largest disk more than once). 

After moving the largest disk for the last time, we must transfer the n-1 

smallest disks (which must be again on a single peg) back onto the largest; 

This requires Tn-1 moves. 

Hence Tn  2Tn-1 + 1 for n > 0.  Therefore 











 0n  for 12TT

0T

1nn

0
 

These set of equalities above is the recurrence for the Tower of Hanoi problem. 

From this it is clear that T3 = 2.3 +1 = 7, T4 = 2.7 +1 = 15, and so on. 

3.5.2 Remark 

Tn can also be identified as Tn = 2n – 1 for n  0. 

The proof of this remark makes use of the principle of mathematical induction.  

3.5.3 Problem 

Find the shortest sequence e of moves that transfers a tower of n disks from 

the left peg A to the right peg B, if direct moves between A and B are 

disallowed.  

(Each move must be to or from the middle peg. As usual a large disk must 

never appear above a smaller one). 
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Solution 

Let Xn denote the number of moves.   

For n = 0, X0 = 0 

For n =1, X1 = 2.   

For n = 2, consider the sequence of steps: 

 

 

 

 

 

 

 

 

Figure 3.2 

moves2   
B to M from 1 disk Transfer (ii)

M to A from 1 disk Transfer (i)





 

 moves 1  M to A from2  disk Transfer (iii)  

moves2   
A to M from 1 disk Transfer (v)

M to B from 1 disk Transfer (iv)





 

 moves 1  B to M from2  disk Transfer (vi)  

moves2   
B to M from 1 disk Transfer (viii)

M to A from 1 disk Transfer (vii)





 

Total number of moves is 8. Figure 3.3 

That is., X2 = X1 + 1 + X1 + 1 + X1  = 2 + 1 + 2 + 1 + 2 = 8 

Similarly, X3 = X2 + 1 + X2 + 1 + X2 = 8 + 1 + 8 + 1 + 8 = 26 

In general, Xn = Xn – 1 + 1 + Xn – 1 + 1 + Xn – 1; n > 0, is the recurrence 

required. 

By induction, one can prove that Xn = 3n–1, n  0. 

1 

A 

Middle 
peg 

B 

1 

Move 1 Move 1 

2 

A B 

1 

M 
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3.6 Integer Functions 

3.6.1 Definition 

For any real number x, we define the floor of x as   

x =the greatest integer less than or equal to x=max {n / n  x, n is an integer} 

3.6.2 Example 

Take x = 2.52, then 

  x   =  max {n / n  x, n is an integer} = max {1, 2}  = 2. 

3.6.3 Definition 

For any real number x, we define the ceiling of x as  

 x   = the least integer greater than or equal to x = min {n / n  x, n is an 

integer}. 

3.6.4 Example 

Take x = 3.732, then  

 x  = min {n / n  x, n is an integer} = min {4, 5, 6, 7…} = 4. 

Observe that for any real number x,   x   x and  x   x. 

3.6.5 Geometric Interpretation 

Floor and Ceiling functions may be understood from their graphical  

(or geometrical) representation. Consider the line f(x) = x, the diagonal on I, III 

coordinates, take x = e = 2.71828….  We describe floor and ceiling of e as 

follows: 
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Figure 3.4 

 

From the graph, e  = 2                             x  = ………... 

                           e  = 3                            x   =  _____ 

-e = -3,  -e = -2 

3.6.7  Properties  

i) From the above graph, it can be observed that, the two functions x  

and x  are equal at integer points.  That is, x  = x  x is an integer 

 x  = x. 

• • • • • • • • • • • • • • 

• 

• 

• 

• 

• 

• 

• 

• 

1 3 2 4 5 -1 -3 -2 -4 -5 

1 

3 

2 

4

0 

-1 

-3 

-2 

-4 

• 
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• 

• 

• 

• 

Floo

r 

Floo

r 

Ceilin

g 

Ceilin

g 

f(x) = x 

f(x) 

x = -e 

x = e 

x 

-2.7182 2.7182 

0 
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ii) x – x  = [ x is not an integer] 

 That is, x  –  x = 




otherwise   0,

integeran not  is  if    1, x
 

iii) x – 1 <  x and x + 1 > x     x –1 < x   x    x < x + 1 

iv) -x = - x and  -x = -x . 

3.6.8 Some Rules on floor and ceiling functions 

In all the following cases, x is real and n is an integer. 

1. x  = n  n  x < n + 1 

2. x  = n  x –1 < n  x 

3. x  = n  n –1 < x  n 

4. x  = n  x  n < x + 1. 

3.6.9 Example 

The above rules can be illustrated, by taking x = 4.5. 

        4.5  = 4  4  4.5 < 5 

        4.5  = 4  3.5 < 4  4.5 

        4.5  = 5  4 < 4.5  5 

        4.5  = 5  4.5  5 < 5.5 

 

3.7 Summary 

The applications of recurrence relations were discussed in this unit, you will 

be able to solve the recurrences using the generating function techniques; 

also, it gives the tool for practical problems involving the difference 

equations, and problems on analytical number theory.  The concept of 

integer functions is given which is useful in the analysis and design of 

algorithms. 
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3.8 Terminal Questions 

1. Solve the recurrence relation an = -3an-1 + n, n  1, where a0 = 1. 

2. Solve an = 2an-1 + 3an-2 + 5n, n  2, given a0 = -2, a1 = 1. 

3. Solve the recurrence relation an = 3an-1, n  1 given a0 = 1. 

4. Solve the recurrence an = -3an-1 + 10an-2, n  2, given a0 = 1, a1 = 4. 

5. Solve the recurrence relation an = -an-1 + 2n – 3, n  1, given a0 =1. 

 

3.9 Answers 

Self Assessment Questions 

1. an = -2n + 2(3n).  

2. an = 2n + n(2n) = (n + 1).2n. 

3. f(x) + g(x) = 2 + 2x2 + 2x4 + …. 

  f(x).g(x) = 1 + x2 + x4 + x6 + ….. 

Terminal Questions 

4. (Ans: an = -
7

2
(-5)n + 

7

9
(2n)). 
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Unit 4 Partially Ordered Sets 

Structure 

4.1 Introduction 

 Objectives 

4.2 Partially Ordered Sets 

4.3 Diagram Representation of Posets 

4.4 Summary 

4.5 Terminal Questions 

4.6 Answers  

 

4.1 Introduction 

There are various types of relations defined on a set.  In this unit, our 

interest is partially ordered relation, which is defined on a set, referred as a 

partially ordered set. This would lead to the concepts of lattices and Boolean 

algebras. We discuss the various  properties of partial order relations on a 

set, and representation of partially ordered sets. 

 

Objectives:  

At the end of the unit, you would be able to 

 know and explain the order relations. 

 draw representation of partial ordered sets. 

 know and explain the properties of partial order relations 

 

4.2 Partially Ordered Sets 

4.2.1 Definition 

A relation R on a set A is called a partial order if R is reflexive, anti-

symmetric and transitive. The set S with a partial order R is called a partially 



Discrete Mathematics Unit 4 

Sikkim Manipal University Page No.: 86 

ordered set or Poset and it is denoted by (A, R).  In general, a partial order 

R on a set is denoted by ≤. 

 

Note that if   (a, b)  R, we write a   b. If a   b and a  b, then we write   a 

> b. 

4.2.2 Example 

Let A = Z+ the set of all positive integers.  Define R on A as aRb if and only if 

a ≤ b. Then (A, ≤) is a partially ordered set.  It is clear that (A, <) is not a 

Poset, since it does not satisfy reflexive. 

4.2.3 Example 

(i) The relations „‟ and „‟ are the partial orderings on the set of real 

numbers.   

(ii) Let X be the power set of the set A. Then define R on X as S1RS2 if and 

only if S1  S2 for S1, S2  X. Then the relation inclusion „‟ is a partial 

ordering on X.   

4.2.4 Example 

Let A be a non-empty set and S = P(A), the power set of A. Define a relation 

R on S as – 

R = {(X, Y)  / X, Y are in P(A) such that X contains Y}. 

Now we verify that the relation is reflexive.   

R is reflexive: For this take X  S. Then X is a subset of A. Since  

X  contains X, we have (X, X)  R.   

R is anti-symmetric: Let (X, Y), (Y, X)  R. Then X contains Y, and Y 

contains X, which imply X = Y. Hence the relation is anti-symmetric.   

R is transitive: Let (X, Y), (Y, Z)  R. Then X contains Y, and Y contains Z.  

So X contains Z, which implies (X, Z)  R.  Hence R is transitive. Therefore,    

S   is a  Poset. 
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4.2.5 Definition 

Let (A, ≤) be any Poset. Two elements a and b of A are comparable if either 

a ≤ b or b ≤ a.  If every pair of elements is comparable then it is called a 

linearly ordered set or a chain.  The Poset  (Z+, R) where  R is defined on A 

as aRb if and only if a ≤ b is a chain. 

4.2.6 Definition 

A finite Poset can be diagrammed on the plane. If  S   is a  Poset  and   a, b   

are in S such that  a > b and there is no c in S such that a > c and c > b,  

then  we say that a covers  b.   

4.2.7 Example 

If a covers b, then represent the point corresponding to a,  above the point 

for  b  and join the points  (This fact is illustrated in the given below Fig-1). 

Now consider the Fig - 2.  In this, we can observe that:  

D covers E; B covers C; F covers C; A covers F.  

Also note that B joined to E by a sequence of line segments all going 

downwards.  

So we have B  E. 

  

 

 

 

 

 

4.2.8 Definition 

(i) An element x of a Poset S is said to be a minimal element if  it 

satisfies the following condition: y  S and x    y   y = x.  

(ii) An element „a‟ of S is said to be a maximal element if it satisfies the 

following condition: b  S and b  a  b = a. 

a 

b 

a covers b 

A 

B F 

C 

D 

E 

Figure 4.1 
Figure 4.2 
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4.2.9 Definition 

A Poset  S  is said to be a totally ordered (or ordered) set if for  a, b  in  S  

exactly one of the conditions:    a  >  b,   a  =  b,   or   b  >  a   holds. 

4.2.10 Problem 

In a finite Poset S, show that there is always atleast one maximal element 

and one minimal element. 

Solution  

Part-I: (For maximal element): In a contrary way, suppose S contains no 

maximal element.  Let x1  S. Since x1 is not maximal, there exists x2 in S 

such that x2  > x1.  

Since x2 is not maximal, there exists x3 in S such that x3 > x2.   

If we continue this process, we get an infinite sequence of distinct elements 

x1, x2, x3, …, such that xi+1  >  xi   for each i.   

This is a contradiction to the fact that S contains only a finite number of 

elements (since S is a finite Poset). Hence we conclude that S contains a 

maximal element. 

Part-II: This part of the proof for a minimal element is parallel to that of part-I. 

       

4.2.11 Definition 

(i) A chain in a Poset is a sequence a0, a1, …, an  of elements of the  

Poset  such that ai > ai+1.  The length of this chain is said to be   n. 

4.2.12 Definition 

Let  (P, ) be a Poset and A  P. An element x  P is called a lower bound 

for A if a  x, for all a  A. A lower bound x of A is called the greatest lower 

bound of A if x  y for all lower bounds y of A.   

An element x  P is called an upper bound for A if x  a, for all a  A. An 

upper bound x is called the least upper bound of A if b  a for all upper 

bounds b of A. 
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4.2.13 Note 

Let R be the set of all real numbers,      A    R.  If A has a lower bound, 

then its greatest lower bound is called infimum and it is denoted by    inf A. If  

A has an upper bound, then its least upper bound is called its   supremum  

and it is denoted by  sup A.  

For any subset A of R  (the set of all real numbers), we have that inf  

A = min A and sup A = max A. 

4.2.14 Zorn’s Lemma 

If P is a partially ordered set in which every chain has an upper bound, then 

P possesses a maximal element. 

Self Assessment Questions  

1. Determine whether the relation R is a partial ordered on theZ . 

(i)  a R b  a = 2b 

(ii) a R b  b2 / a, where a, b Z .      

2. Determine which of the following are equivalence relations and / or 

partial ordering relations for the given sets. 

(i) S = {lines in the plane}; xRy  x is parallel to y 

(ii) N = {set of natural numbers}; xRy  |x – y|  5.  

 

4.3 Diagram Representation of Posets  

4.3.1 Definition 

The covering matrix of a finite Poset P = { pi / 1  I  n } is the matrix  

(
jib ) n  n  where 

jib  = 1 if pi covers pj or i = j;  

                                  = 0 otherwise. 
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4.3.2 Example 

The diagram of a Poset was given on the right side. The covering matrix of 

this Poset is given by 

















100

110

011

.  

4.3.3 Note 

(i) The chain p0  > p1  > p2 >  … > pk is said to have length k. 

(ii) An element p of a finite Poset is on level k if there exists a sequence    

p0  >  p1 >  …  > pk  =  p  and any other such sequence has length less 

than or equal to  k. 

(iii) Suppose p is on level k and p0 > p1  >  …  > pk = p. Then p0 is a 

maximal element of the Poset.  (if  p0  is not maximal, then there exists  

p1  such that p1  >  p0.   

 Then p1 > p0 > p1 > … > pk is of length  (k + 1), a contradiction to the 

 fact p is on level k). 

(iv) Fix j. An element pj is maximal  pj has no cover  
jib = 0 for all i  j  

and i = 1, 2, …,  n.  jth column of (
jib ) contains 1 in the jth row and 0 

else where.  

   The sum of the elements in the jth column is 1. 

(v) If the sum of the elements of the jth column of the covering matrix is  

“1”, then the corresponding jth element is a maximal element (that is, 

the element is of level 0). 

4.3.4 Definition 

A partial ordering ≤ on A Poset, is represented by a diagram called Hasse 

diagram. In a Hasse diagram, each element is represented by a small circle.    

 

 

b 

c 

a 
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4.3.5 Example 

Consider the Poset with the diagram. Here a is of level 0; b is of level 1; c  is 

of level  1; d  is of level  2;   e  is of level  2;  f  is of level 3. 

 

 

 

 

Figure 4.3 

4.3.6 Example 

Let A = {a, b, c}. Then p(A) = { ,  {a}, {b}, {c}, {a, b}, {b, c}, {c, a}, {a, b, c}}. 

Consider the Poset (p(A),  ). Then Hasse diagram is shown below: 

 

         

 

 

 

 

 

 

 

 

 

Figure 4.4 

4.3.7 Example 

Let A = {2, 7, 14, 28, 56, 84) and a ≤ b if and only if a divides b. Then Hasse 

diagram for the Poset (A, ≤) is  

Since 2 divides 14, we join 2 and 14 with a line segment;  

7 divides 14 so we join 7 and 14 by a line segment; and so on.  Finally we 

get a Poset diagram shown below. 

a 

b c 

d e 
f 

{a} {b} 
{c} 

{a, c} 

{b, c} 

{a, b, c} 

 

0 

o 

o 

o 

o 

{a,b}o 

o 

o 
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Figure 4.5 

4.3.8 Example 

Let n be a positive integer and Dn denotes the set of all divisors of n. 

Consider the partial order „divides‟ in Dn.  The Hasse diagrams for D6,, D24 

and D30 are given in the following figures.   

D6 = {l, 2, 3, 6},    

D24 = {1, 2, 3, 4, 6, 8, 12, 24} 

D30 = {1, 2, 3, 5, 6, 10, 15, 30}. 

 

Figure 4.6 
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4.3.9 Example 

Consider the Posets S and T represented in the following figures (a) and (b). 

 

 

Figure 4.7 

Then the Poset (S  T, ≤) is given in figure (c). 

4.3.10 Example 

Consider the Posets (D4, ≤) and (D9, ≤) given in (a) and (b). The Hasse 

diagram for L = D4  D9 under the partial order, is given by figure (c). 

 

Figure 4.8 
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Observations:  

 (i) The elements in level -1 are called atoms. 

 (ii) For a given Poset Hasse diagram need not be unique.  

 (iii) Hasse diagram for the dual Poset (A, ) can be obtained by rotating 

the Hasse diagram of the Poset (A, ≤) through 1800. 

Self Assessment Questions 

3. Let A = {1, 2, 3, 4, 5, 6}.  The relation “|” (divides) is a partial order 

relation on A.   Draw the Hasse diagram of (A, “|”).             

4. Consider the partial ordered set S = {1, 2, 3, 4, 5, 6, 7, 8} under the 

relation whose  Hasse diagram is shown below.  Consider the subsets 

S1 = {1, 2}, S2 = {3, 4, 5} of A.  Find  (i) All the lower and upper bounds of 

S1 and S2 ; (ii) glb S1, lub S1, glb S2, lub S2. 

 

 

 

 

 

 

 

Figure 4.9 

4.4 Summary 

The structures of partial ordered sets and lattices are useful in sorting and 

search procedures, and constructions of logical representations for 

computer circuits. The diagrammatic forms of lattices are useful in search, 

path procedures. We have learnt the interrelations between the algebraic 

structures, Posets and Lattices and obtained some of their important 

equivalences. These concepts are the base for the Boolean algebra and 

logical circuits. 

3 2 1 
o o 

4 

6 

o o 

o o 

o 

o 

8 

7 

5 
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4.5 Terminal Questions          

1. Determine whether the relation R is a partial ordered on the Z. 

i) a R b  a = 2b 

ii) a R b  b2 / a, where a, b Z .      

2. Determine which of the following are equivalence relations and / or  

partial ordering relations for the given sets 

i) S = {lines in the plane}; xRy  x is parallel to y 

ii) N = {set of natural numbers}; xRy  |x – y|  5.  

3. Determine which of the following are partial order? 

i) R1 = {(a, b)  Z x Z  / |a - b|  1} on Z  

ii) R2 = {(a, b)  Z x Z  / |a|  |b| } on Z  

iii) R3 = {(a, b)  Z x Z  / a divides b in Z } on Z  

iv) R4 = {(a, b)  Z x Z  / a-b  0}                                        

4. Define a relation R on Z, the set of all integers as: aRb  a + b is even 

for all a, b  Z.  Is R a partial order relation on Z ?          

5. Let A = {1, 2, 3, 4, 5, 6}.  The relation “|” (divides) is a partial order 

relation on A.   Draw the Hasse diagram of (A, “|”).                                       

6. Let S = {a, b, c}.  Define “” on P(S), the power set of S as set 

inclusion. Draw the Hasse diagram for the partially ordered set (P(S), ).                        

7. Find the atoms in the following lattice,                    

 

 

 

 

 

 

Figure 4.10 

8. A relation R is symmetric if and only if the relation matrix is _______   

9. The elements in the level -1 of a Poset are called _____ 

10. Define x R y  x y 5  for all natural numbers x and y.Then R is ____ 

a 

g 

b 

e 

c 

d 

f 

 

 

 

  

 

 
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4.6 Answers  

Self Assessment Questions  

1.  (i)  No (ii) No 

2.  (i)  It is an equivalance relation, but not partial ordering as R is not   

 antisymmetric. 

  (ii) Not transitive and so it is neither.  

 

3.  

 

 

 

 

Figure 4.11 

 

4. Upperbounds of S1 are 3, 4, 5, 6, 7 and 8                        

        Lowerbounds of S1 are none. 

         glb (S1) : none 

         lub (S1) : none 

         Upperbounds of S2 are 6, 7 and 8 

         Lowerbounds of S2 are 1, 2 and 3 

         glb (S2) = 3 

         lub (S2) = none. 

Terminal Questions  

1. (i) No (ii) No 

2. (i)  It is an equivalence relation, but not partial ordering as R is not  

  anti-symmetric. 

3. Not transitive and so it is neither.  

4. (i) No  (ii)  No   (iii) No  (iv) Yes. 

5. Not a partial order relation.  (Reason: 1R3 (since 1 + 3 is even), 3R1 

(since 3 + 1 is even), but 1 ≠ 3). 

4 

5 

o 

o 

6 

3 2 

1 

o 

o 

o o 
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5.   

 

 

 

 

 

Figure 4.12 

 

 

6.  

 

 

 

 

 

 

 

 

 

Figure 4.13 

 

7. e and f are atoms.       

8. Symmetric.  

9. Atoms   

10. Not partial order and not an equivalence relation. 

4 

5 

o 

o 

6 

3 2 

1 

o 

o 

o o 

{a, b} 

{a} {b} 
{c} 

{a, c} 

{b, c} 

{a, b, c} 

 

o 

o 

o 
o 

o 

o 

o 

o 
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Unit 5 Lattices 

Structure 

5.1 Introduction 

 Objectives 

5.2 Definitions and Examples 

5.3 Properties of Lattices 

5.4 Bounded and Complemented Lattices 

5.5 Distributive Lattices 

5.6 Summary 

5.7 Terminal Questions  

5.8 Answers 

 

5.1 Introduction 

This unit introduces the algebraic structure defined by a lattice.  Properties 

of lattices will also be discussed here.  Lattices with universal lower and 

upper bounds are considered. Diagram representations of lattices are 

observed. Two equivalent form of lattices are defined. Some 

characterizations of complemented and distributive lattices are also 

obtained. The concepts play important role in logical circuits and Boolean 

algebras. 

Objectives:  

At the end of the unit, you would be able to 

 explain the structure of a lattice. 

 define  the properties of lattices. 

 draw the lattice diagrams. 

 describe  bounded and complemented lattice. 

 explain  distributive and modular lattice and their characterization. 
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5.2 Definitions and Examples 

5.2.1 Definition 

Let   (P, ) be a Poset and A  P. An element x  P is called a lower bound 

for A if a  x, for all a  A. A lower bound x of A is called a greatest lower 

bound  (infimum) of A if x  y for all lower bounds y of A.   

An element x  P is called an upper bound for A if x  a, for all a  A. An 

upper  bound x is called a least upper bound (supremum) of A if b  a for all 

upper bounds b of A. 

5.2.2 Example 

Consider the Poset (Z+, ≤), where ≤ denotes divisibility.  

Let A = {1, 2, 3, 4, 6, 8, 12, 24} = D24.  Clearly A is a subset of Z+. Now the 

upper bounds set of A = {24, 48, 72, …}. Here 24 is the least upper bound 

and 1 is the glb. 

Note that for any subset A of R (the set of all real numbers), we have that   

inf A = min A and sup A = max A. 

5.2.3 Definition 

A Poset (L, ) is said to be a lattice (or lattice ordered) if supremum of  

x  and  y; and infimum of x and y exist for every pair  x, y    L.  

5.2.4 Note 

(i) Every chain is lattice ordered  

(ii) Let  (L, )  be a lattice ordered set; and x, y  L. Then we have the 

following: x  y  sup (x, y)  =  y  inf  (x, y)  =  x.  

5.2.5 Definition 

A lattice (L, , ) is a set L with two binary operations  (called as meet or  

product) and     (called as join or sum)  which satisfy the following laws, for 

all   x, y, z    L:                         
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X  y = y  x,  and    x  y  =  y  x  (Commutative laws). 

x  (y  z) = (x  y)  z, and x  (y  z) = (x  y)  z (Associative laws). 

x  (x  y) = x; and x  (x  y)  =  x (Absorption laws).   

5.2.6 Examples 

(i) Let Z+ be the set of positive integers.  Define a relation „D‟ on    

 Z+  by aDb  a  divides  b for any a, b  Z+ . 

 Then   (Z+, D) is a lattice, in which,  

 a  b   =   gcd {a, b}    and    a    b   =   lcm {a, b}. 

5.2.7 Definition 

Let (L,  )  be a lattice.  If every non-empty subset of L has greatest lower 

bound and least upper bound, then L is said to be a complete lattice.   

5.2.8 Examples 

(i) Let P be the set of all integers with usual ordering.  Clearly it is a 

lattice.  The set of all even integers is a subset of P and it has no 

upper bound or lower bound.  Hence P is not a complete lattice. 

(ii) If P = { i  /  1  i  n }  and    is the usual ordering of integers, then    

P  is a complete lattice. 

5.2.9 Definition 

A subset S of a lattice L is called a sublattice of L if S is a lattice with 

respect to the restriction of   and  from L to S.  

It is clear that a subset S of L is a sublattice of the lattice L  S is “closed” 

with respect to  and  (that is, s1, s2  S  s1  s2  S and s1  s2  S).  

5.2.10 Example 

Let (A, ≤) be a lattice and S be a non-empty subset of L. Then (S, ≤) is 

called a sublattice of (L, ≤) if a  b  S and a  b be S for a, b  S. 

5.2.11 Example 

The lattice (Dn, ≤) is a sublattice of (Z+, ≤) where ≤ is the divisibility relation. 
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5.2.12 Definition 

Let (A, ≤) be a lattice.  An element g  A is called the greatest element of A 

if a ≤ g for all a  A. Similarly, an element s  A is called the smallest 

(least) element of A if s ≤ a for all a  A. 

5.2.13 Example 

(i) Consider N = the set of all natural numbers. Define a  b  a divides b,  

for all  a,  b    N. Then (N, ) is a POset. For any x, y  N, we write 

x y =  gcd {x, y} and x y = lcm {x, y}. Then (N, ) is a lattice. Here 1 is 

the zero element.   The greatest element does not exist. 

(ii) Let A be a set. Consider P(A) = the power set of A. (P(A),  )  is a 

POset  (where   is the set inclusion) For any X, Y  P(A), we write  

X Y = X Y    and X   Y = X Y. Then (P(A),  ) is a lattice. In this 

lattice,  is the smallest element and A is the greatest element.      

Self Assessment Question 

1. Verify whether the set L = {1, 2, 3, 4, 6, 12}, the factors of 12 under the 

relation „divisibility‟ forms a lattice. 

 

5.3 Properties of Lattices 

5.3.1 Properties 

Let (L, , )   be an algebraic lattice  and x  L.  

1. x  x =  x,  x  x = x (idempotent) 

2. 2.x  y = y  x, x  y = y  x  (commutative) 

3. x  (y  z) = (x  y)  z, x  (y  z) = (x  y)  z (Associative) 

4. x  (x  y) = x,  x  (x  y) = a (Absorption)  

5.3.2 Theorem 

Let (L, ≤) be a lattice.  For a, b  L, 

(i) a ≤ b  a  b = a 

(ii) a ≤ b  a  b = b 
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Proof: Assume that a ≤ b. 

Since a ≤ a, we have that a is a lower bound of a and b. Therefore a ≤ a  b 

and a  b is the glb of a and b.   

By definition of a  b, we have a  b ≤ a. Therefore, by anti-symmetric 

property, we have a  b = a. 

Conversely suppose that a  b = a. Then by definition of a  b,  

a = a  b ≤ b.   

Thus we have a  b = a  a ≤ b. 

In a similar way we can prove (ii). 

5.3.3 Problem 

Let a and b be two elements in a lattice (L, ≤ ). Show that a  b = b if and 

only if a  b = a. 

Solution 

Part (i): Suppose a  b = b. Now  

                          a = a  (a  b)                        (by absorption law) 

                              = a  b                                (supposition) 

Part (ii): Suppose a  b = a. Now  

                            b = b  (b  a)                         (by absorption) 

                              = b  (a  b)                          (by commutative) 

                              = b  a                                   (supposition) 

                             = a  b                                    (by commutative)   

5.3.4 Theorem 

Let (L, ≤) be a lattice.  Then for a, b, c, d  L, 

(i) a ≤ b  a  c ≤ b  c 

(ii) a ≤ b  a  c ≤ b  c 

(iii) a ≤ b and c ≤ d  a  c ≤ b  d 

(iv) a ≤ b and c ≤ d  a  c ≤ b  d.  
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Proof: 

(i) From the above theorem 5.3.2, we have a ≤ b  a  b = b. 

 Now (a  c)  (b  c) = (a  c)  (c  b)  (by commutative) 

 = a  (c  c)  b       (by associative) 

        =  a  (c  b)            (by idempotent)  

        = (a  b)   c  

        = b  c. 

 By theorem 5.3.2, we have a  c ≤ b  c. 

(ii) Similar 

(iii) From the theorem 5.3.2, a ≤ b  a  b = b and c ≤ d  c  d = d. 

 Now (a  c)  (b  d) = a  (c  b)  d (by associative) 

                                           = a  (b  c)  d  (commutative) 

                                           = (a  b)  (c  d) (associative) 

                                           = b  d (since a ≤ b and c ≤ d)  

 Therefore a  c ≤ b  d           (by  theorem 5.3.2). 

(iv) Similar. 

5.3.5 Theorem 

The following two conditions are equivalent: 

(i) (L, ≤) is a partially ordered set in which every pair of elements a, b in  L, 

 the lub {a, b} and glb {a, b} exist.  

(ii) (L,  ,  ) be an algebraic system satisfying commutative, associative, 

 absorption and idempotent laws with a ≤ b if and only if a  b = a.  

5.3.6 Theorem 

(i) Let (L, ) be a lattice ordered set.  Define x  y = inf (x, y), and  

x  y =  sup (x, y). Then (L, , ) is an algebraic lattice.  

(ii) Let (L, , ) be an algebraic lattice. Define x  y  x  y = x, Then  

(L, ) is a lattice ordered set.  

Proof: Part-(i): Let (L, ) be a lattice ordered set  and x, y, z    L.  
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Commutative laws: x  y = inf (x, y)  

                                         =  inf (y, x)  

                                         =   y  x. 

                               x  y  =   sup (x, y)  

                                         =  sup (y, x) 

                                         =  y  x. 

Associative laws: x  (y  z)   =   x  inf (y, z)    

                                                =   inf (x, inf (y, z))    

                                                =   inf  (x, y, z)  

                                                =   inf (inf(x, y), z)  

                                                =   inf (x, y)    z    

                                                = (x  y)   z.  

Similarly, we have that x(y z)  =   (x  y)    z. 

Absorption laws: x  (x  y)  = x  sup (x, y)    

                                              =   inf (x, sup (x, y)) 

                                              =  x. Also   x  (x  y) 

                                              =  x  inf (x, y)   

                                              =  sup (x, inf  (x, y))  

                                              =  x.  

Part-(ii):  Let   (L, , )   be an algebraic lattice.   Let    x, y, z    L.  

Step-(i): In this step we prove that (L, )  is a partially ordered set.  

Reflexive: Follows from the idempotent laws,  

since x  x = x    and    x  x = x and so x    x.  

Anti-symmetric: Suppose x  y and y  x    

                         x  y = x and y    x  =  y 

                         x = xy =   y  x   (by commutative law)  

                                          =  y 

                                x = y.   
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Transitive: Suppose x  y and y  z 

 x  y = x and y  z = y   

Now x = x  y = x  (y    z)  

                        =   (x  y)  z (by associative law) 

                        = x  z  x = x  z  x  z .   

This shows that  is transitive. So we can conclude that (L, ) is a Poset.  

Step-(ii): In this step we prove that sup (x, y) = x  y. By 5.3.2, we have that       

 X  y  x   y = y  x  y = x …. (i) 

 Let x, y  L. Then x  (x    y) = x   x  x  y.  

Similarly y  x  y. Therefore x  y is an upper bound for {x, y}. 

Suppose z  L be an upper bound for {x, y}.    

Then x  z and y  z. By (i), we get that x  z = z and y  z = z. Now  (x  y) 

 z = x   (y  z) (by associative law)   

                            =    x    z   (by (i))                                  

                            =    z. 

This implies x  y   z.   

This shows that sup (x, y)   = x  y.   

In a similar way, we prove that inf (x, y) = x    y. 

 

Step-(iii): From the above steps (i) and (ii), we conclude that   (L, )  is a 

lattice ordered set.  

Observation: From the Theorem 5.3.6, it is clear that there exists a one-to-

one relationship between lattice ordered sets and algebraic lattices. In other 

words, the concepts "lattice ordered set" and "algebraic lattice" are 

equivalent. So we can use the term lattice for both concepts: lattice ordered 

sets and algebraic lattices. (ii) We write |L| to denote the number of 

elements of L. (iii) If N is a subset of a Poset, then xN x and xN x denote 
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the supremum and infimum of N, respectively, whenever they exist.  We say 

that the supremum of N is the join of all elements of N and the infimum is 

the meet of all elements of N.  

5.3.7 Duality Principle 

Any “formula” involving the operations  and  which is valid in any lattice    

(L, , ) remains valid if we replace  by , and  by  everywhere in the 

formula. This process of replacing is called dualyzing.  

Self Assessment Question 

2. The dual of a  a = a is __________ 

3. The dual of a  (b  c) = (a  b)  c is _________ 

4. The dual of a  (a  b) is ____________ 

5.4 Bounded and Complemented Lattices 

5.4.1 Definition 

If a lattice L contains the smallest (greatest, respectively) element with respect 

to , then this uniquely determined element is called the zero element (unit 

element, respectively). The zero element is denoted by 0, and the unit element 

is denoted by 1. The elements 0 and 1 are called universal bounds.  If the 

elements 0 and 1 exist, then we say that the lattice L is a bounded lattice. 

5.4.2 Example 

In the lattice, (D36, ≤), 1 is the least element and 36 is the greatest element.  

In general, (Dn, ≤) is a bounded lattice for any positive integer  n. 

5.4.3 Example 

(i) In the lattice (Z+, ≤) with ≤ means usual ≤ is not a bounded lattice as 1 is 

the least element and there is no greatest element.  

5.4.4 Note 

If a lattice L is bounded  (by 0 and 1), then  every x  in  L  satisfies 0  x   1, 

0  x = 0, 0  x = x, 1  x = x, and 1  x  =  1.  
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5.4.5 Theorem 

Let L be a lattice, and x, y, z  L. Then L satisfy the following distributive 

inequalities:  

(i) x    (y  z)      (x  y)    (x  z)  

(ii) x    (y  z)      (x  y)    (x  z)  

Proof: We know that x  y  x, and x  y  y  y  z.    

So x  y is a lower bound for x and y  z    

 x  y  x  (y    z). 

Now x  z   x and x  z  z  y  z  x  z is a lower bound for x and y  z     

 x  z  x  (y  z).   

Therefore, we have that x (y  z) is an upper bound for x  y  and x  z and 

so (x  y)  (x  z)  x  (y  z). This completes the proof for (i). The proof of 

(ii) is similar. 

5.4.6 Definition 

A lattice L with 0 and 1 is called complemented if for each x  L there exists 

at least one element y such that x  y = 0 and x  y = 1. Each such y is 

called a complement of x. We denote the complement of x by x1.  

5.4.7 Example 

(i) Let L = P(M). Then B = M \ A is the unique complement of A.       

(ii) In a bounded lattice, 1 is a complement of 0, and 0 is a complement of  1.  

(iii) Every chain with more than two elements is not a complemented lattice. 

(iv) The complement need not be unique.  For example, in the diamond 

lattice, both the two elements b and c, are complements for the 

element a.  

(v) Let L be the lattice of subspaces of the vector space R2. If T is a 

complement of a subspace S, then S  T = {0} and S + T = R2.   

 Hence a complement is a complementary subspace.    
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5.4.8 Example 

(i) In a bounded lattice, 1 is a complement of 0, and 0 is a complement of 1.   

(ii) Every chain with more than two elements is not a complemented lattice. 

(iii) The complement need not be unique. For example, in the diamond lattice, 

both the two elements b and c, are complements for the element a.  

5.4.9 Definition 

Let L be a lattice with zero. An element a  L is said to be an atom if a  0 

and if it satisfies the following condition: b   L,   0 < b  a implies that b = a. 

Self Assessment Questions  

2. The dual of a  a = a is __________ 

3. The dual of a  (b  c) = (a  b)  c is _________ 

4. The dual of a  (a  b) is ____________ 

5. Verify whether the lattice (Z+, ≤) with ≤ defined as a ≤ b  a  b is a 

bounded lattice.   

6. In the lattice given below write complements of a, b, and c.  

  

 

 

 

 

 

 

 

Figure 5.1 
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7. Find the atoms in the following lattice.                    

 

 

 

 

 

 

 

 

Figure 5.2 

 

5.5 Distributive Lattices 

5.5.1 Definition 

A lattice  (L, , ) is called a modular lattice if it satisfies the following 

condition: x  z  x  (y  z) = (x  y )  z for all x, y, z  L. This condition is 

called as modular identity.   

5.5.2 Example 

Consider the lattice L1 = {0, a, b, c, 1} whose Hasse diagram is given. This 

lattice L1 is a modular lattice. This lattice is called as diamond lattice. 

 

 

 

 

 

 

Figure 5.3 

5.5.3 Example 

Consider the lattice L2  =  {0, a, b, c, 1}  whose Hasse diagram is given. This 

lattice  L2   is not a modular lattice.   
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Since     b    c,  by modular law,  we have that  

                 b  (a  c)  =  (b  c)  c    

                   b   0  =  1  c   

                     b  =  c, a contradiction.   

Hence   L2   is not a modular lattice.   

 

 

 

 

 

 

 

 

Figure 5.4 

5.5.4 Definition 

A lattice L is said to be a distributive lattice if it satisfies the following laws:  

(i) a  (b  c)  =  (a  b)  (a  c),  and   

(ii) a  (b  c)  =  (a  b)  (a  c), for all a, b, c  L.   

  These two laws are called the distributive laws.  

5.5.5 Example 

(i) For any set X, the lattice (P(X),  ,  ) is a distributive lattice.  

(ii) Every chain is a distributive lattice.  

 

 

  

 

 

 

Figure 5.5 
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(iii) Consider the lattice given by the diagram 

 

 

 

 

 

 

Figure 5.6 

 Now b  (c  d) = b  a = b, and (b  c)  (b  d) = e  e = e.   

 Therefore, this is not a distributive lattice. 

5.5.6 Problem 

In a distributive lattice, if an element has a complement, then it is unique.  

Solution: Suppose that an element a has two complements, say b and c.   

That is, a  b = 1, a  b = 0, a  c = 1, a  c = 0. 

We have b = b  1 (since 1 is the universal upper bound)  

                  = b  (a  c) (since a  c = 1)  

                  = (b  a )  (b  c) (by the distributive law)  

                  = (a  b)  (b  c) (since  is commutative)  

                  = 0  (b  c) (since a  b = 0)  

                  = (a  c)  (b  c)            (since a  c = 0)               

                  = (a  b)  c                     (by distributive law)  

                  = 1  c                              (since a  b =1)  

                  = c                                    (since 1 is the universal upper bound).  

Therefore, the complement is unique.      

5.5.7 Problem 

Prove that the following properties of a lattice L are equivalent:    

(i) a  (b  c) = (a  b)  (a  c) for all a, b, c  L;  

(ii) (a b)   c = (a  c)     (b  c)  for all   a,  b,  c    L;   

(iii) (a b)  (b  c)   (c  a)  =  (a  b)  (b  c)(ca) for all a, b, c  L.  

a 

e 

b d c 



Discrete Mathematics Unit 5 

Sikkim Manipal University Page No.: 112 

Solution: 

(i)  (ii): Suppose    a  (b  c)  =  (a  b)  (a  c)  for all   a,  b,  c    L;  

 (ac)(bc)  =  [(ac)b] [(ac)c]  (by (i))  

                      =  [(ac)b]c (by commutative and absorption laws)   

                      =  [(a  b)  (c b)]  c  (by (i)) 

                      =  (a b)  [(c b)  c]  (by associative law)  

                      =  (a b)  c (by absorption law). 

This proves (ii).  

(ii)  (iii): Suppose (ii).   

(a b)  (b  c)   (c  a)  =  (a b)    [(b  c)  (c  a)]   

= {a[(bc)(ca)]}{b[(bc)(ca)]}       (by  (ii))     

= {a  (b  c)}   {b  (c  a)} (by commutative, associative and absorption)  

=  {(a  b)  (a   c)}   {(b  c)  (b  a)}    (by  (ii))   

=  (a  b)  (b   c)  (c  a)         (by idempotent law)  

(iii)  (i): Suppose that a  c. Then ab  c b  (ab)(cb) = (cb) ….. 

(A) Also a  c = c. Now (a  c)  (b  c)   

                              =  (a  c)  [(a  b) (c  b)]                        

                              =  (a  b)  (b  c) (c  a)  

                              =  (a  b)   (b   c)  (c   a) (by   (iii)) 

                              =  (a  b)  (b   c)  c (since   a    c) 

                              =  (a  b)  c (by absorption law).  

Now we proved that    (a  b)  c = (a  c)   (b  c).   

This shows that (i) is true. This completes the proof.  

5.5.8 Problem 

If L is a distributive lattice, then it is a modular lattice.  

Solution: Assume that L is a distributive lattice. Let x, y, z  L and x  z.    

We have that  (x  y)   (y  z)  (z  x) = (x  y)  (y  z)  (z  x).   

Since x  z, we have that x  z = x and x  z = z, and so   

(x  y)  (y  z)  x = (x  y)  (y  z)  z  .  
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This implies x  (y  z) = (x  y)  z   (by absorption laws).  

This shows that L is a modular lattice.    

The converse of the above problem is not true.   

That is, there exist modular lattices which are not distributive.  The following 

example is a modular lattice, but not distributive.   

 

 

 

 

 

 

Figure 5.7 

5.5.9 Problem 

For a given lattice L, the following two conditions are equivalent: 

(a) x (y  z) = (x y)  (x  z), and 

(b) (b)  x (y  z) = (x  y)  (x z)   for all x, y, z  L.   

Solution: Suppose that x  (y  z) = (x  y)  (x  z)    …  (i).   Now    

 (x  y)  (x  z) = [(x  y)  x]  [(x  y)  z] (by   (i))   

                           =   x   [(x  y)   z]  (by commutative and  

  absorption laws) 

                           =  x  [z  ( x  y)]  (by commutative law)     

                           =   x  [(z  x)  (z y)] (by (i))  

                           =   [x  (z  x)]  [z y]  (by associative law)  

                           =   x  (z y) (by commutative and absorption law)  

Other part is similar. 
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5.6 Summary 

In this unit, we discussed the algebraic structure defined as a lattice.  

Properties of lattices were discussed. Diagrammatic representations of 

lattices are observed. Some characterizations of complemented and 

distributive lattices are studied. The concepts are useful in logical circuits and 

Boolean algebras. 

 

5.7 Terminal Questions 

1. Verify whether the following are modular lattices.       

 

 

 

 

 

 

 

Figure 5.8 

2. Consider the lattice A = {0, a1, a2, a3, a4, a5, 1} given below.      

 

 

 

 

 

 

 

 

Figure 5.9 

(i) Is A is a distributive lattice 

(ii) What are the complements of a1 and a2? 
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3. Write the complements a, b and c from the given lattice.                   

 

 

 

 

 

 

 

Figure 5.10 

4. Define a distributive lattice and complemented lattice. 

5. In a distributive lattice, if an element has a complement, then prove that 

it is unique.  

6. Let (L, ≤) be a lattice.  Then for a, b, c, d  L, 

(i) a ≤ b  a  c ≤ b  c 

(ii) a ≤ b  a  c ≤ b  c 

(iii) a ≤ b and c ≤ d  a  c ≤ b  d 

(iv) a ≤ b and c ≤ d  a  c ≤ b  d.  

7. Let a and b be two elements in a lattice (L, ≤).  Show that a  b = b if 

and only if a  b = a. 

8. (i) Let (L, ) be a lattice ordered set. Define x  y = inf (x, y), and               

 x  y = sup (x, y). Then prove that (L, , ) is an algebraic lattice.  

 (ii) Let (L, , ) be an algebraic lattice. Define x  y  x  y = x. Then 

 prove that (L, ) is a lattice ordered set.  
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5.8 Answers 

Self Assessment Questions 

1. This is a lattice. 

2. a  a = a  

3. a  (b  c) = (a  b)  c 

4. a  (a  b)  

5. This is not a bounded lattice, since there is no greatest element.   

6. Complements of a are b and c  

     Complements of b are a and c  

      Complements of c are a and b. 

7. The atoms are e and f.                       
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Unit 6 Algebraic Structures  

Structure 

6.1 Introduction 

 Objectives 

6.2  Semigroups 

6.3  Monoids 

6.4  Groups  

6.5  Permutation Groups 

6.6 Summary 

6.7 Terminal Questions 

6.8 Answers 

 

6.1 Introduction  

In this unit, begin our study of algebraic structures by investigating sets 

associated with single operations that satisfy certain reasonable axioms; 

that is, we wish to define an operation on a set in a way that will generalize 

such familiar structures as the integers Z together with the single operations 

of addition, matrix multiplication. We will also deal with the special kind of 

groups namely, permutation groups. 

 

Objectives:  

At the end of the unit, you would be able to 

 describe the algebraic systems with one binary operation.          

 generalize the structure of semigroup to a monoid. 

 explain the structure of a group and its substructures. 

 explain the permutations groups. 
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6.2 Semigroups  

A non empty set together with a number of operations (one or more m-ary) 

operations defined on the set is called an algebraic system.  Generally the 

binary operations denoted by “*, o, , +, .” etc. 

In this section, we will consider a set with one binary operation.  This has 

several applications in the theory of finite state machines, Automata theory 

etc. 

6.2.1 Definition 

Let S be a non empty set. Then the operation * on S is said to be 

associative if (a * b) * c = a * (b * c) for all a, b, c  S. 

6.2.2 Example 

i) Take Z+ = the set of positive integers. The binary operation „+‟ (usual) on 

Z+ is an associative operation. 

ii) Define on Z+ as a  * b = a2 + b, where „+‟ is usual addition. 

iii) For any 2, 3, 4  Z+ , 2 *  3 = 22 + 3 = 4 + 3 = 7,  (2 * 3) * 4=7 * 4=49 +4= 

53. 

 Where 2 * (3 * 4) = 17.  Therefore „ * ‟ on Z+ is not associative. 

6.2.3 Definition 

Let (A, *) be an algebraic system where * is a binary operation on A.  (A, *) 

is called a semigroup if the following conditions are satisfied: 

i) „*‟ is a closed operation. That is., a * b  A for all a, b  A. 

ii) „*‟ is an associative operation. That is., a * (b * c) = (a * b) * c, for all a, 

b, c  A. 

6.2.4 Example 

i) Take A = {a1, a2,…,an} be a non empty set.   Let A* be the set of all 

finite sequences of elements of A.  That is, A* consists of all words that 

can be formed from the set A. Let ,  be elements of A*. The operation 
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catenation is a binary operation on A*.  For any two strings  = a1a2…an 

and  = b1 b2…bk , then  = a1a2…an b1 b2…bk .   It can be verified 

that for any ,  and  of A* , () = ().  Therefore, (A*,) is a 

semi group.  

ii) Let S be any set and P(S) the power set of S. Then (P(S),) is a semi 

group, where  is the set union.    

iii) The set Z (the set of integers) with the binary operation subtraction is 

not a semigroup, since subtraction is not associative. 

6.2.5 Example 

The set N, of natural numbers is a semigroup, under the operation *, where    

x * y = max{x, y}. 

Solution: (x * y) * z = max{max(x, y), z}  

                                 = max{x, y, z}  

                                 = max{x, max(y, z)} 

                                 =  x * (y * z).  

Therefore * is associative. Thus (N, *) is a semigroup. 

6.2.6 Example 

Test whether the set Z (the set of integers), with binary operation * such that 

x * y = xy is a semigroup. 

Solution: 

Consider (2 * 2) * 3 = 22 * 3 

                                = 4 * 3  

                                = 43 = 64 and  

2 *(2 * 3) = 2 * 23  

                = 2 * 8  

                = 28 = 256.  

Therefore (Z, *) is NOT a semigroup. 
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6.2.7 Definition 

i) Let (S, *) be a semigroup and let T be a subset of S.  If T is closed 

under the operation * (That is., a * b  T whenever a and b are 

elements of T), then (T, *) is called a subsemigroup of (S, *). 

6.2.8 Definition 

Let (S, *) and (S1, o) be two semigroups. A function f: S  S1 is called an 

isomorphism from (S, *) to (S1, o) if,  

i) f is one-to-one (that is, one-one and onto) 

ii) f(a * b) = f(a) o f(b) for all a, b  S  (homomorphism condition) 

6.2.9 Result 

If f is an isomorphism from (S, *) to (S1, o), then f-1 is an isomorphism from 

(S1, o) to (S, *). 

Proof: Let a1, b1  S1. Since f is onto, there exist a, b  S such that f(a) = a1, 

f(b) = b1. Then f -1 )ba(
11  = f-1(f(a)of(b)) = f-1(f(a * b)) (Since f is homomorphism)  

= (f-1of)(a * b) 

= a * b 

= f-1(a1) * f-1(b1).  

Therefore, f-1 is an isomorphism. 

6.2.10 Problem 

Show that the semigroups (Z, +) and (T, +) where T is the set of all even 

integers, are  isomorphic. 

Solution: Define f: Z  T by f(n) = 2n. 

f is one-one:  Suppose f(n1) = f(n2)   2n1 = 2n2   n1 = n2. 

f is onto:  Suppose b  T.  Then b is an even integer.  Write a = 
2

b
  Z. 
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Now f(a) = 








2

b
f  = 









2
2

b
 = b. 

Therefore, f is one-one and onto. 

f is homomorphism:  Let m, n  Z. 

f(m + n) = 2(m + n) = 2m + 2n = f(m) + f(n). 

Therefore, f is a homomorphism and hence (Z, +) and (T, +) are isomorphic. 

6.2.11 Note 

If (S, *) and (S1, o) are semigroups such that S has an identity and S1 does 

not have identity, then (S, *) and (S1, o) cannot be isomorphic. 

6.2.12 Definition 

An equivalence relation „R‟ on the semigroup (S, *) is called a congruence 

relation if aRa1 and bRb1 imply (a * b) R (a1 * b1). 

6.2.13 Example 

Semigroup (Z, +) and the equivalence relation R on Z defined by  

aRb if and only if a  b (mod 2). 

If a  b (mod 2), then 2| a – b. 

Now a  b (mod 2) and c  d (mod 2)  2| a – b ad 2 | c – d. 

 a – b = 2m,  c – d = 2n, where m, n  Z 

Adding (a – b) + (c – d) = 2(m + n)  (a + c) – (b + d) = 2(m + n).  

This shows that the relation is a congruence relation. 

6.2.14 Example 

Consider the semigroup (Z, +) where „+‟ is the ordinary addition.  

Let f(x) = x2 – x – 2. Define a relation R on Z by a R b  f(a) = f(b).   

Reflexive:aRa  

Symmetric: aRb  f(a) = f(b)  bRa  

Transitive: aRb and bRc  f(a) = f(b) and f(b) = f(c)  

 f(a) = f(c)  aRc 

Therefore, R is an equivalence relation. 

To verify R is a congruence relation. But R is NOT a congruence relation; 
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f(-1) = f(2) = 0   - 1R2; f(-2) = f(3) = 4  -2R3,  but (-1 + (-2)) is not „R‟ 

related to  (2 + 3) since f(-3) = 10 and f(5) = 8.  

6.2.15 Theorem 

If (S, *) and (T, o) are semigroups, then (S  T, ) is a semigroup, where  

defined by (s1, t1)  (s2, t2) = (s1 * s2, t1 o t2). 

6.2.16 Note 

Let (S, *) be a semigroup and R is an equivalence relation on S. Then R 

determines a partition of S. Let [a] = R(a) be the equivalence class 

containing a. Denote S/R = {[a] / a  S}. 

6.2.17 Theorem 

Let R be a congruence relation on the semigroup (S, *).  Consider the 

relation  from S/R  S/R to S/R in which the ordered pair ([a], [b]) is for a 

and b in S, related to [a * b]. 

(i)  is a function from S/R  S/R to S/R. 

 ([a], [b]) = [a]  [b] = [a  b]. 

(ii) (S/R, ) is a semigroup. 

Proof: (i). To verify that  is a function: 

Suppose ([a], [b]) = ([a1], [b1]). Then aRa1 and bRb1.   

Since R is a congruence relation on S, we have a*bRa1*b1  [a*b] = [a1*b1]  

 [a]  [b] = [a1]  [b1].  That is.,  

([a], [b])  = ([a1], [b1]). 

This shows that  is a binary operation on S/R.  

Next we verify that  is associative. 

Now [a]  ([b]  [c]) = [a]  [b*c]  

                                 = [a*(b*c)] = [(a*b)*c]         (by associativity of *) 

                                 = [a * b]  [c] = ([a]  [b])  [c].   

Therefore,  satisfies associative property.  Hence S/R is a semigroup. 

6.2.18 Definition 

The semigroup S/R verified above is called the quotient semigroup or 
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factor semigroup. 

 

6.2.19 Example 

Observation: a  b (mod n)  a = qn + r and b = tn + r for some q, t, r  Z  

 a – b is a multiple of n.  That is, n| a – b. 

Take a semigroup (Z, +). Define a relation „R‟ on Z as follows:   

Let n be a positive integer, aRb  a  b (mod n). 

We verify that R is an equivalence relation. 

Clearly a  a (mod n) and so aRa. Suppose aRb, then a  b (mod n)   

                                                 n| a – b 

                                                 n|  – (a – b) 

                                                 n| b – a 

                                                 b  a (mod n).  

Therefore, aRb  bRa. 

Suppose a  b (mod n) and b  c (mod n).  

Then n| a – b and n| b – c  n| (a - b) + (b - c)  n| a – c.  

This implies a  c (mod n).  

Therefore aRb, bRc  aRc. So R is an equivalence relation.   

Take n = 4. The equivalence classes determined by the congruence relation 

 (mod 4) on Z.  (It is denoted by Z4). 

[0] = {… – 8, – 4, 0, 4, 8, 12,  …} = [4] = [8] = … 

[1] = {…– 7, – 3, 1, 5, 9, 13,  ..} = [5] = [9] = ... 

[2] = {…… – 6,  – 2, 2, 6, 10, 14, …} = [6] = [10] = … 

[3] = {… – 5,  – 1, 3, 7, 11, 15, …} = [7] = [11] = … 

Define  on Z4 as follows: 

  [0] [1] [2] [3] 

[0] [0] [1] [2] [3] 

[1] [1] [2] [3] [0] 

[2] [2] [3] [0] [1] 
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[3] [3] [0] [1] [2] 

 

 

In general, [a]  [b] = [a + b].  Thus ℤ n has the „n‟ equivalence classes                                      

[0], [1], [2], ….,[n – 1] and that [a]  [b] = [r], where r is the remainder when 

a + b is divided by n. The following theorem establishes a relation between 

the structure of a semigroup (S, *) and the quotient semigroup (S/R, ), 

where R is a congruence relation on (S, *).   

6.2.20 Theorem 

Let R be congruence relation on a semigroup (S, *) and let (S/R, ) be the 

corresponding quotient semigroup. Then the function fR: S  S/R defined by 

fR(a) = [a] is an onto homomorphism. 

Proof: Take [a]  S/R. Then fR(a) = [a], so fR is an onto function.               

Let a, b  S, then fR(a * b) = [a * b]  

                                           = [a]  [b]  

                                           = fR(a)  fR(b).  

Therefore, fR is a homomorphism. 

6.2.21 Fundamental Theorem of homomorphism 

Let f: S  T be a homomorphism of the semigroup (S, *) onto the 

semigroup (T, o).  Let R be the relation on S defined by aRb  f(a) = f(b) for 

a and b in S.  Then (i) R is a congruence relation; (ii). (T, o) and the quotient 

semigroup (S/R, ) are isomorphic. 

 

6.3 Monoids 

6.3.1 Definition 

Let (A, *) be an algebraic system where * is a binary operation on A. An 

element e in A is said to be a left identity (respectively, right identity) if for all 
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x  A, e * x = x (respectively, x * e = x) holds. 

 

6.3.2 Example 

i) Define „*‟ on A = {a, b, c, d} as follows: 

* a b c d 

a d a b c 

b a b c d 

c a b c c 

d a b c d 

 

Here both b and d are left identities. 

ii) Define „o‟ on A = {a, b, c, d} as follows: 

o a b c d 

a a b c d 

b b a c d 

c c d a b 

d d d b c 

Here a is  right identity.  

6.3.3 Definition 

An element in an algebraic system is said to be an identity if it is both a left 

identity and a right identity. 

6.3.4 Note 

Observe that if e is a left identity, then either e is also a right identity or there 

is no right identity at all. 

6.3.5 Definition 

Let (A, *) be an algebraic system, where * is a binary operation on A.   (A, *) 

is called a monoid if the following conditions are satisfied: 

i) * is a closed operation 
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ii) * is an associative operation 

iii) existance of identity. 

 

6.3.6 Example 

Let X be a non empty set. Write XX = {f / f: X  X}.  Let „o‟ denote the 

operation of composition of mappings. That is, (fog)(x) = f(g(x)) for all f,  

g  XX and x  X. Now „o‟ is a binary operation on XX. Also f(x) = x for all x  

X is the identity, as (gof)(x) = g(f(x)) = g(x) = f(g(x)) = (fog)(x) for all g  XX.  

Therefore,  (XX, o) is a monoid. 

6.3.7 Example 

i) For any set S, ((S), ) where (S) is a power set of S, is a 

commutative semigroup.  It is also a monoid with the empty set  as 

the identity element. 

ii) The set (Z, +) is a monoid with identity 0. 

iii) Let (M, *) be a monoid with identity „e‟ and let T be a non empty subset 

of M.  If T is closed under the operation „*‟ and e  T, then (T, *) is 

called submonoid of (S, *). 

Observation:  

(i) The associative property holds in any subset of a semigroup so that a 

subsemigroup (T, *) of a semigroup (S, *) is itself a semigroup.   

(ii) A submonoid of a monoid is itself a monoid. 

6.3.8 Example 

Let T be the set of even integers. Then (T, .) is a subsemigroup of the 

monoid (Z, .) where “.” is usual multiplication.  But (T, .) is not a submonoid, 

since the identity 1  T. 

6.3.9 Example 

i) Suppose (S, *) is a semigroup, and let a  S.  For any n  Z+, we 
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define the integral powers of an recursively as follows: 

  a1 = a,  an = an-1 * a,  n  2.  Write T = {an / n  Z+}.  

  Then (T, *) is a subsemigroup of (S, *). 

ii)  Let (S, *) be a monoid and a  S.  

  Define a0 = e, a1 = a, an = an – 1 * a, n  2 (as in (i)) 

  Write T1 = {an / n  Z+,  {0}}. Then (T1, *) is a submonoid of (S, *). 

Self Assessment Questions 

1. Let E be the set of all even integers.  Show that the semigroups  

(Z, +) and (E, +) are isomorphic. 

2.  Let A = {x, y}.   Which of the following tables define a semigroup on A?  

Which define a monoid on A? 

          (i)     

* x y 

x x y 

y x x 

 

          (ii)   

* x y 

X x y 

y y y 

                                     

3. Determine whether (Z+,* ) where a*b = a is a semigroup?  

4. Check whether (Z+,* ) where a*b = max{a, b}, a semigroup or monoid?  

5. Let S = {a, b}.  Write the operation table for the semigroups S.  Is the 

semigroup commutative?  

6. Let A = {a, b, c} and consider the semigroup (A*, .) where „.‟ is the 

 operation of catenation.  If α = abac, β = cba and γ = babc, compute 

      (i) (α.β).γ     (ii) γ.(α.α )  (iii) (γ.β).α . 
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6.4 Groups 

In this section we study the important algebraic object known as group, 

which serves as one of the fundamental building blocks for the abstract 

algebra.  In fact group theory has several applications in every area where 

symmetry occurs.  Applications of groups also can be found in physics and 

chemistry. Some of exciting applications of group theory have arisen in 

fields such as Particle Physics, and Binary Codes. 

6.4.1 Definition 

Let us recollect that for a non empty set G, a binary operation on G is 

mapping from G  G to G.  In general, binary operations are denoted by *, . , 

o etc. 

6.4.2 Definition 

A non empty set G together with a binary operation * is called a group if the 

algebraic system (G, *) satisfies the following four axioms: 

i) Closure: a, b are elements of G, implies a*b is an element of G. 

ii) Associative: (a*b)*c = a*(b*c) for all elements a, b, c in G. 

iii) Identity: There exists an element „e‟ in G such that a*e = e*a = a for all  

a  G. 

iv) Inverse: For any element a in G there corresponds an element b in G 

such that a*b = e = b*a. 

6.4.3 Note 

The element e of G (given in identity axiom) is called an identity element.  

The element b (given in the inverse axiom) is called an inverse of a in G.  

6.4.4 Definition 
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Let (G, *) be a group.  Then (G, *) is said to be a commutative group (or Abelian 

group) if it satisfies the commutative property: a*b = b*a for all  a, b  G. 

 

6.4.5 Example 

Take G = {-1, 1}. Then (G, .) is a commutative group w. r. t. the usual 

multiplication of numbers. 

Closure:   Clearly,  a.b is in G  for all a, b in G. 

Associative: Since 1, -1 are real numbers, this axiom holds. 

Identity axiom: 1. a = a = a.1 for all elements a  G. 

                          Hence 1 is the identity element. 

Inverse: The element 1 is the inverse of 1 and -1 is the inverse of  -1 

Commutative: (-1).1 = 1. (-1). Therefore, commutative law holds in (G, .).   

Hence (G, .) is a commutative group. 

6.4.6 Definition 

Let G be a group.  If G contains only a finite number of elements then G is 

called a finite group.   

If G contains infinite number of elements then G is called an infinite group. If 

G is a finite group then the Order of G is the number of elements in G.  

If G is infinite group, then we say that order of G is infinite.  The Order of G 

is denoted by O(G). 

6.4.7 Example 

i) Let G be the set of all integers and + be the usual addition of numbers.  

Then (G, +) is an Abelian group.  Here „0‟ is the additive identity and –x 

is the additive inverse of x, for any x in G.  This (G, +) is an infinite 

group and so O(G) is infinite. 

ii) Consider Q, the set of rational numbers, and R the set of all real 

numbers. Clearly these two are infinite Abelian groups w. r. t. usual 

. -1 +1 

-1 1 -1 

1 -1 1 
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addition. 

iii) From the above, it is clear that the set G consisting of –1 and 1 is a 

group w. r. t. usual multiplication. This group is a finite group and  

O(G) = 2. 

6.4.8 Lemma 

If G is a group, then  

i) The identity element of G is unique. 

ii) Every element in G has unique inverse in G. 

iii) For any a  G, we have (a-1)-1 = a. 

iv) For all a, b  G, we have (a.b)-1 = b-1.a-1. 

Proof:  

i) Let e, f be two identity elements in G.  Since e is the identity, we have 

e.f = f.  Since f is the identity, we have e.f = e.  Therefore, e = e.f = f.  

Hence the identity element is unique.  

ii) Let a be in G and a1, a2 are two inverses of a in G. 

 Now a1 = a1.e        (since e is the identity)  

                       = a1.(a.a2) (since a2 is the inverse of a) 

                       = (a1.a).a2 (by associativity)  

                       = e.a2 (since a1 is the inverse of a) 

                       = a2. 

 Hence the inverse of an element in G is unique. 

iii) Let a  G.  Since a.a-1 = e = a-1.a, we have that a is the inverse of a-1.   

 Hence (a-1)-1 = a. 

iv) Let a, b  G.  Consider (b-1.a-1)(a.b) = b-1.(a-1.a).b = b-1.e. b = b-1.b = e.   

 Similarly e = (a.b).(b-1.a-1). This shows that (a.b)-1 = b-1.a-1. 

6.4.9 Definition 

Let (G, o) be a group. A non-empty subset H of G is said to be a subgroup 

of G if H itself forms a group under the operation o in G. 
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6.4.10 Lemma 

A non-empty subset H of a group G is a subgroup of G if and only if – 

(i) a, b  H   ab  H and (ii) a  H   a-1  H. 

 

Proof: Suppose that H is a subgroup of G  

 H itself is a group under the product in G. Therefore (i) and (ii) holds.  

Converse: Suppose H satisfies (i) and (ii) By (i), H satisfies the closure 

property. 

For any a, b, c  H, we have that a, b, c  G implies that a(bc) = (ab)c. 

Therefore (H, .) is a subgroup of (G, .). 

6.4.11 Problem 

If H is a non-empty finite subset of a group G and H is closed under 

multiplication, then H is a subgroup of G. 

Proof: Suppose H is a non-empty finite subset of a group G and H is closed 

under multiplication. Now we have to show that H is a subgroup of G. 

It is enough to show that a  H  a -1  H                                   

Since H is a non-empty, there exists a H.   Now a, a  H  a2  H. 

Similarly a3  H, … , am 
 H, … . 

Therefore, H  {a, a2, …}.  

Since H is finite, we have that there must be repetitions in a, a2, …. 

Therefore, there exist integers r, s with r > s > 0 such that ar = as  

 ar . a-s = a0  

 ar-s = e  e  H (since r-s > 0 and aH  ar-s  H). 

Since r-s-1  0, we have ar-s-1  H and a. ar-s-1 = ar-s = e  H. 

Therefore a r-s-1 acts as the inverse of a  H. Hence H is a subgroup. 

6.4.12 Example 

Consider G = Z, the group of integers with respect to addition. Write           
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H = {5x / x  G}. Suppose a, b  H  a = 5x, b = 5y for some x, y  G  

 a + b = 5x + 5y = 5(x + y)  H. Also –a = -5x = 5(-x)  H.  

Therefore, H  is a subgroup of G. 

 

6.4.13 Problem 

Let G be a group, a  G. Then  (a) = {ai / i = 0,  1, …} is a subgroup of G. 

Solution:  Let x, y  (a)  x = ai and y = aj for some i, j  Z. Now  

x. y = ai. aj = ai+j
 (a) (since i+j  Z).  

Also x-1 = (ai)-1 = a-i  (a) (since ai. a-i = ai-i = a0 = e  (ai)-1 = a-i). 

Therefore,  x, y  (a)  x. y  (a) and x-1  (a). Hence (a) is a subgroup of G. 

6.4.14 Definition 

i) Let G be a group and a  G. Then (a) = {ai / i = 0,  1, …} is called the 

cyclic subgroup generated by the element a  G.   

ii) G is said to be a cyclic group if there exists an element a  G such 

that G = (a). 

iii) Let G be a group, H be a subgroup of G, a, b  G. We say that                     

a is congruent to b (mod H), written as a  b (mod H) if a b-1  H.  The 

relation a  b (mod H) is an equivalence relation. 

iv) If H is a subgroup of G and a  G, then write Ha = {ha / h  H} is called 

the right coset  of H in G. aH = {ah / h  H} is called the left coset. 

6.4.15 Example 

i) Consider the group Z6 = {0, 1, 2, 3, 4, 5}.  Then H = {0, 3} is a subgroup 

of G.  The left cosets of the subgroup H in Z6 are:  

 {H = {0, 3}, 1 + H = {1,4},   2 + H = {2 ,5} }.   

ii) Let G = the additive group of integers.  Let H = {…, -9, -6, -3, 0, 3, 6, 9, 

…}.  Then H is a subgroup of G.  We have 1  G, 1 + H = {…, -8, -5, -2, 



Discrete Mathematics Unit 6 

Sikkim Manipal University Page No.: 133  

1, 4, 7, …} and 2  G, 2 + H = {-7, -4, -1, 2, 5, 8, 11, …}.  The sets H, 

1+ H, 2+ H are all distinct right cosets of H in G.  

 

 

6.4.16 Properties of Cosets 

Let H be a subgroup of G and a, b  G.  Then,  

i) a  aH 

ii) aH = H if and only if a  H 

iii) aH = bH or aH  bH =   

iv) aH = bH if and only if a-1b  H.    

 Analogues properties hold for right cosets.  

6.4.17 Problem 

There is a one-to-one correspondence between any two right cosets of              

H in G. 

Proof: Let H be a subgroup of G and Ha, Hb be two right cosets of H in G 

(for some a, b  G).  

Define : Ha  Hb by (ha) = hb for all ha  Ha.  

 is one-one: Let h1a, h2a  Ha such that (h1a) = (h2a) 

                                 h1b = h2b  

                                 h1 = h2                  (by cancellation Law)  

                                 h1a = h2a. 

Therefore  is one-one. 

 is onto: Let hb  Hb  h  H. Now ha  Ha and (ha) = hb. Therefore  is 

onto.  

6.4.18 Note 

Since H = He we have that H is also a right coset of H in G and by the 
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problem 6.4.17, any right coset of H in G have O(H) elements.  

6.4.19 Lagrange’s Theorem  

If G is  a finite group and H is a sub group of  G, then O(H) is  a divisor of 

O(G).       

 

Proof: Let G be a finite group and H is a subgroup of G with O(G) = n, O(H) 

= m, (since G is finite, H is also finite).  

We know that any two right cosets are either disjoint or identical. 

Now suppose Ha1, Ha2, …, Hak are only distinct right coset of H in G  

 G  = Ha1  Ha2  …  Hak  

 O(G) = O(Ha1) + O(Ha2)+ … + O(Hak)  

              = O(H) + O(H) + … + O(H) (k times)   

                                               (since every right coset has O(H) elements) 

 O(G) = k. O(H) 

 n = k.m  (n/m) = k.  

Hence O(H) divides O(G). 

6.4.20 Note 

Converse of the Lagranges theorem is not true: that is, “If  G is a finite group 

and k | O(G) then there exists a subgroup H of G such that O(H) = k” is not 

true. 

6.4.21 Example 

Consider the symmetric group S4.  We know that S4 = {f : A  A / f is a 

bijection and A = {1, 2, 3, 4}}.  Clearly |S4| = 24 (= 4!).  Now A4 = the set of 

all even permutations in S4.  Then |A4| = 12.  It can be verified that any six 

elements of A4 cannot form a subgroup. Therefore, 6 | O(A4) but A4 contains 

no subgroup of order 6. (refer the section:  Permutation Groups). 
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6.4.22 Definitions 

i) If H is a subgroup of G, then the index of H in G is the number of 

distinct right cosets of H in G. It is denoted by i(H).  

ii) If G is a group and a  G, then the order of „a‟ is defined as the least 

positive integer m such that am = e.  

 

6.4.23 Definition  

If there is no positive integer n such that an = e then ‘a’ is said to be of 

infinite order. 

6.4.24 Definition 

A subgroup N of G is said to be a normal subgroup of G if for every   g  G 

and n  N such that gng-1  N.   It is clear that a subgroup N is a normal 

subgroup of G if and only if gNg-1
 N for all g  G. 

6.4.25 Definition 

i) A mapping : G  G1 where G, G1 are groups, is said to be a 

homomorphism if for all a, b  G we have that (ab) = (a). (b).  

ii) If  is a homomorphism of G into G1, then the kernal of  (denoted by 

ker ) is defined by 

 ker  = {x  G /  (x) = e1, where e1 is the identity in G1}. 

6.4.26 Example 

Let G be a group of real numbers under addition and let G1 be the group of 

non-zero real numbers with the ordinary multiplication. 

Define : (G, +)  (G1, .) by (a) = 2a.  Now consider  

(a + b) = 2a+b = 2a. 2b = (a). (b).  

Therefore,  is a homomorphism. 

6.4.27 Problem 

If  is a homomorphism of G into G1, then  

(i) (e) = e1 where e1 is the identity element of G1.   
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(ii) (x-1) = [(x)]-1 for all x in G. 

Proof:  

i) Let x  G  (x)  G1.  

 Now (x) = (x).e1
 and (x) = (xe) = (x). (e) (since  is homo.). 

 Therefore (x). e1 = (x). (e)  

  e1 = (e)       (by cancellation laws). 

ii) By (i), e1 = (e) = (xx-1) = (x). (x-1)  

 (x-1) is the inverse of (x).  

 That is (x-1) = [(x)]-1. This is true for all x  G. 

6.4.28 Problem 

If  is a homomorphism of G into G1 with kernal K, then K is a normal 

subgroup of G.        

Proof: First we show that K  . Since (e) = e1 where e1 is the identity in 

G1, we have that e  ker  = K. Therefore, K  . Now we show that K is 

closed under multiplication and every element in K has inverse in K. 

Let x, y  K  (x) = e1 and (y) = e1  

 (xy) = (x). (y) (since  is homomorphism)  

              = e1. e1 = e1 

  xy  K. This proves the closure axiom.   

Let x  K  (x) = e1. Now  (x-1) = [(x)]-1 = [e1]-1 = e1.  

Therefore, x-1  K. Thus every element in K has its inverse in K.  Hence K is 

a subgroup of G.  

Next we show that K is a normal. Take g  G, k  K.  

(gkg-1)  = (g)(k)(g-1) 

               = (g).e1.(g-1)  (since kK  (k) = e1)  

               = (g).(g-1) = (g).[(g)]-1  = e1  

  (gkg-1) = e1  gkg-1  K. Hence K is a normal subgroup  of G.  
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6.4.29 Theorem (Fundamental theorem of homomorphism) 

Let  be a homomorphism of G on to G1 with kernal K. Then G/K  G1.  

Proof : Since  is an onto homomorphism from G to G1, we have  (G) = G1. 

That is G1 is the homomorphic image of . Define f: G/K  G1 by f(Ka) = 

(a) for all Ka  G/K.  

 

f is well defined: Let a, b  G and Ka = Kb  

                    ab-1  K 

                     (ab-1) = e1       

                     (a). [ (b)]-1 = e1 

                     (a) =  (b)  

                    f (Ka) = f (Kb).  

f is 1-1: Suppose f(Ka) = f(Kb) 

                    (a) =  (b)  

                    (a). [ (b)]-1 = e1       

                    (a).  (b-1) = e1 

                    (ab-1) = e1  

                   ab-1  K 

                   Ka = Kb.  

Therefore f is 1-1. 

f is onto : Let y  G1. Since : G  G1 is onto, we have that there exists x  

G such that  (x) = y. Since x  G, we have Kx  G/K. Now f(Kx) = (x) = y.  

Therefore, f is onto. 

f is homomorphism : Let Ka, Kb  G/K.  

f (Ka.Kb) = f (Kab)  

               = (ab) = (a).(b) (since  is homomorphism) 

               = f(Ka).f(Kb).  

Therefore, f is a homomorphism.  
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Hence f: G/K  G1 is an isomorphism. 

Self Assessment Questions 

7. Give an example of abelian group of 2×2 matrices over real numbers 

with respect to  multiplication.  

8. Consider the group (Z, +). Let H = {3n / n  Z}. Show that the set H is a 

subgroup  of Z. 

9. Prove that (G, +6) is cyclic where G = {0, 1, 2, 3, 4, 5}. 

 

10. If „*‟ is a binary operation in Q+ defined by  

(i) a * b = 
3

ab
 

(ii) a * b =  
2

ab
 

 where a, b  Q+ (set of all positive rationals). Show that (Q+, *) is an 

 abelian group. 

11. Examine which of the following are groups.  For those which fail to be 

groups mention which group axoims do not hold. 

i) G = R, the set of reals, with respect to ‘*’ where a * b = a for all a R. 

ii) G = Z, the integers, with a * b = a + b + 1, a, b,  Z. 

iii) G = R, a * b = a + b – ab for all a, b  R. 

 

6.5 Permutation Groups 

6.5.1 Definition 

If the set S contains n elements, then the group  

A(S) = {f : S  S / f is a one-one and onto function} 

 has n! elements. Since S has n elements we denote A(S) by Sn and this  

A(S) = Sn is called the symmetric group  of degree n. If   A (S) = Sn, 

then  is  a one  to  one mapping of S onto itself. 

6.5.2 Example 

If S = {x1, x2, x3, x4} and   A(S) by  (x1) = x2,  (x2) = x4,  (x3) = x1,      
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(x4) = x3 is denoted by  = 














31

43

42

21

xx

xx
   

xx

xx
 or   















31

43
   

42

21
.  

If  = 














42

43
   

13

21
 and  = 















42

43
   

31

21
, then  

  = 














43

43
   

12

21
 (verify).   

Here we use   (x) = ( (x)) for all x  S. 

6.5.3 Example 

Permutation multiplication is not usually commutative. Let  =  

1 2 3 4
   

4 1 2 3

 
 
 

 and  = 
1 2 3 4

   
2 1 4 3

 
 
 

.  Then 

  =  
1 2 3 4

   
1 4 3 2

 
 
 

 but   =  
1 2 3 4

   
3 2 1 4

 
 
 

. 

6.5.4 Definition 

A permutation   Sn is a cycle of length k if there exists elements a1, a2, …, 

ak  S such that (a1) = a2, (a2) =  a3, …, (ak) =  a1 and (x) =  x for all 

other elements x  S. We will write (a1, a2, …, ak) to denote the cycle .  

Cycles are the building blocks of the permutations.  

6.5.5 Example 

The permutation  = 
1 2 3 4 5 6 7

6 3 5 1 4 2 7

 
 
 

 = (162354) is a cycle of length 6, 

whereas  = 
1  2  3  4  5  6

1  4  2  3  5  6

 
 
 

 = (243) is a cycle of length 3.   Also, not, every 

permutation is a cycle. Consider the permutation  
1 2 3 4 5 6 

2 4 1 3 6 5

 
 
 

 = (1243)(56). 

Example: Compute the product of cycles  = (1352),   = (256). 

Solution:  = (1356). 
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6.5.6 Note 

Two cycle (a1, a2,…, ak) and (b1, b2, …, bk) are said to be disjoint if ai  bj for 

all i and j.  

For instance, the cycles (135) and (27) are disjoint; however, the cycles 

(135) and (347) are not.  Calculating their products, we find that  

(135)(27) = (135)(27)  

(135) (347) =(13475). 

It is observed that the product of two cycles that are not disjoint may reduce to 

something less complicated; the product of disjoint cycles cannot be simplified.  

The simplest permutation is a cycle of length 2. Such cycles are called 

transpositions.   

Since (a1, a2,…, an) = (a1an) (a1an-1)… (a1a3) (a1a2), any cycle can be written 

as the product of transpositions. 

6.5.7 Definition 

i) A permutation is said to be an odd permutation if it is the product of 

an odd number of transpositions (or 2- cycles). 

ii) A permutation is said to be an even permutation if it is the product of 

an even number of transpositions (or 2 – cycles). 

6.5.8 Example 

Consider the permutation (16)(253) = (16)(23)(25) = (16)(45)(23)(45)(25).  

As we can see, there is no unique way to represent permutation as the 

product of transpositions.  

For instance, we can write the identity permutation as (12)(21), as 

(13)(24)(13)(24), and in many other ways.  However, no permutation can be 

written as the product of both an even number of transpositions and an odd 

number of transpositions.   

For instance, we could represent the permutations (16) by (23)(16)(23) or by 

(35)(16)(13)(16)(13)(35)(56) but (16) will always be the product of an odd 
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number of transpositions. 

6.5.9 Note 

i) The product of two even permutations is an even permutation. 

ii) The product of an even permutation and an odd one is odd (like wise 

for the product of an odd and even permutation). 

iii) The product of two odd permutations is an even permutation.  

Self Assessment Questions  

12. Determine which of the following permutations is even or odd 

(i) (1 3 5) 

(ii) (1 3 5 6)  

(iii) 














3 4 1 2

4 3 2 1
 

(iv) 














1 4 2 3 5

5 4 3 2 1
  

(v) (1 3)(1 2 4)(1 5 3) 

 

6.6 Summary 

The algebraic structures with one binary operation were discussed.  Some 

important characterizations of the algebraic systems Semigroups, Monoid 

and Groups were given. Interrelations between these were obtained.  A 

special kind of set of one-to-one mappings, referred as permutation groups, 

which are the central to the study of the Geometric symmetries and to 

Galois Theory were discussed. These also provide abundant examples of 

nonabelian groups.  

 

6.7 Terminal Questions 

1. Find the inverse of each of the following permutations 
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 (i)  








2 4 3 1

4 3 2 1
     (ii) 









4 5 1 3 2

5 4 3 2 1
   (iii) 









2 1 4 3

4 3 2 1
 

2. Express each of the following as a product of transpositions and hence 

determine whether it is odd or even. 

 (i)  








3 1 2

3 2 1
     (ii)  









1 2 3

3 2 1
  (iii) 









1 2 3 4

4 3 2 1
 

 

3. If G is a group such that (ab)2 = a2b2 for all a,b  G, then show that G is 

abelian. 

4. In the following, determine whether the systems described are groups.  

If they are not, point out which of the group axioms fail to hold.  

a) The set of all integers. Operation: aob = a – b. 

b) The set of all positive integers. Operation: aob = a.b. 

c) {ao, a1, , a6} where aioaj = ai+j if i + j < 7 and aioaj = ai+j-7  

(that is, if i + j  7). 

d) The set of all rational numbers with odd denominators. Operation: 

aob = a + b. 

5. If a group G has only three elements, show that it must be abelian. 

6. Let G be the set of all real 2  2 – matrices 








do

ba
where ad  0.  

Prove that G forms a group under matrix multiplication.  Is G is 

abelian? 

 Q.7-8: State whether True/False. 

7. The set Z (set of integers) with the operation „addition‟ is commutative.  

8. The set R (real numbers) is commutative with the operation „addition‟. 

9. The number of elements in the symmetric group of order 3 is _______ 

 

6.8 Answers 
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Self Assessment Questions 

1. Define f: Z→ E by f(a) = 2a.  Suppose that f(a1) = f(a2).  Then 2a1 = 2a2 

and so a1 = a2. Therefore, f is one-to-one.  For any even integer b, take 

a = 
2

b
 Z and f(a) = f(

2

b
) = 2(

2

b
) = b. Therefore, f is onto.   

 Also f(a+b) = 2(a+b) = 2a+2b = f(a)+f(b). Therefore f is 

 homomorphism and hence f is an isomorphism.   

 

2. Semigroup (ii) Monoid (ii) 

3. Yes  

4. Monoid: (identity). 

5. Let f1(a) = a, f1(b) = a, f2(a) = a, f2(b) = b, f3(a) = b, f3(b) = a, f4(a) = b, 

f4(b) = b.  These are the only functions on S.  It  is not commutative, 

Since 1331 ffff    

o f1 f2 f3 f4 

f1 f1 f1 f4 f 4 

f2 f1 f2 f3 f 4 

f3 f1 f3 f2 f 1 

f4 f1 f4 f4 f 4 

 

6. (i) abaccbababc, (ii) babcabacabac, (iii) babccbaabac 

7. Take G = {A, B, C, D}, where A = 








10

01
, B = 









10

01
 C = 









10

01
 D 

= 












10

01
 A is the identity in G. Table of multiplication as follows: 

. A B C D 

A A B C D 

B B A D C 
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C C D A B 

D D C B A 

8. H is nonempty.  For x, y  H, then there exist p, q  Z such that x = 3p, 

y = 3q, we have x-y = 3(p – q)  Z. 

9. 11 = 1, 12 = 1 +6 1 = 2, 13 = 1 +6 1
2 = 3, 14 = 1 +6 1

3 = 1 +6 3 = 4, - - - 

 Thus G = {10, 12, 13, 14, 15, 16 = 0}.   Therefore 1 is a generator.   Also 5 

is another generator. 

 

10. (i)  Identity e = 3, a-1
 = 

a

9
 

 (ii) Identity e = 2 and the inverse of a i.e., a-1 =
a

4
. 

11. (i) doesnot have identity  (ii) is a group. 

12.  (i) even,   (ii) odd  (iii) even  (iv) even  (v) odd. 

 

Terminal Questions 

1. Ans/Hint: (i) 








3 2 4 1

4 3 2 1
 (ii)  









4 5 2 1 3

5 4 3 2 1
 (iii) 









2 1 4 3

4 3 2 1
 

2. Ans / Hint (i) (1, 2) odd  (ii) (1, 3) odd  (iii) (1, 4) (2, 3) even 

3. Ans / Hint: For any a, b  G, we have  a(ba)b = (ab)(ab) = (ab)2 = a2b2 

= a(ab)b and so the conclusion follows by left and right cancellations 

laws) 

4. Ans / Hint: (a) is not a group since it has no identity element with 

respect to multiplication. (b), (c), (d) are left to the reader 

5. Hint: Let G = {e, a, b} and e  a  b  e.  Now observe the multiplication 

table for G.  

 

 

. e a b 

e e a b 

a a a2 ab 

b b b b2 
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6. Ans: Not Abelian 

7. True 

8. True 

9. Ans: 6 elements 
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Unit 7 Propositional Calculus and Quantifiers 

Structure 

7.1 Introduction 

 Objectives 

7.2 Statements, Propositions and Tautologies 

7.3 Equivalence of Formulas  

7.4 Normal Forms   

7.5 Logical Inferences  

7.6 Summary 

7.7 Terminal Questions  

7.8 Answers 

 

7.1 Introduction 

Logic means reasoning. The main aim of logic is to provide rules by which 

one can determine the validity of any particular argument or reasoning. The 

rules are called rules of inference. These rules should be independent of 

any particular argument or discipline or particular language used in the 

argument. We need an objective language to frame the rules or theory. The 

basic unit of our objective language is called a primary statement (variable). 

We assume that these statements cannot be further broken down or 

analyzed into simpler statements.  

These primary statements have only one of the two possible values TRUE 

(T) or FALSE (F). These values T or F are referred as truth value of the 

primary statement.  We often denote the truth value TRUTH (T) by „1‟ and 

the truth value FALSE (F) by „0‟. 
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Consider the following Examples: 

1. Moscow is the capital city of Italy. 

2. 2 + 3 = 7. 

3. Bangalore is the capital city of Karnataka. 

4. Gangtok is the capital of Sikkim 

5. New Delhi is the capital city of Germany. 

6. Open the door 

7. 1 + 2 = 3 

The statement (iii) is not a primary statement because it has neither the truth 

value „T‟ nor „F‟. The remaining four statements are primary statements.  

Statements (i) and (v) have the truth value „T‟ (or 1), and the statements (ii) 

and (iv) have the truth value „F‟ (or 0). 

7.1.1 Example 

Consider the case of a Researcher in Mathematics who has arrived at a 

reasonable conjecture. To verify this conjecture the Mathematician tries to 

construct a proof that will show that the statement of the conjecture follows 

logically from the accepted Mathematical statements.  If he succeeds in this 

endeavor, he considers that he has proved his conjecture accepted 

Mathematical statement. Another Mathematician will accept this new 

statement only if he agrees that the proof is correct, or if he can construct a 

proof of his own. It appears that there lie some general rules and 

procedures for constructing proofs. 

We shall mean, by formal logic, a system of rules and procedures used to 

decide whether or not a statement follows from some given set of 

statements.  A familiar example from Aristotelian logic is: 

  (i) All men are mortal 

 (ii) Socrates is a man 

Therefore (iii)   Socrates is moral. 
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According to the logic, if any three statements have the following form 

(i) All M are P 

(ii) S is M 

Therefore (iii) S is P 

then (iii) follows from (i) and (ii).  The argument is correct, no matter whether 

the meanings of statements (i), (ii), and (iii) are correct.  All that is required 

is that they have the forms (i), (ii), and (iii).  In Aristotelian logic, an argument 

of this type is called syllogism. 

The formulation of the syllogism is contained in Aristotle‟s organon.  It had a 

great fascination for medieval logicians, for almost all their work centered 

about ascertaining its valid moods.  The three characteristic properties of a 

syllogism are as follows: 

(i) It consists of three statements.  The first two statements are called as 

premises, and the third statement is called as conclusion.  The third one 

(conclusion) being a logical consequence of the first two (the premises). 

(ii) Each of the three sentences has one of the four forms given in the Table  

Table 7.1 

Classification Examples 

Universal and affirmative judgment All X is Y 

All men are mortal 

All monkeys are tree climbers 

All integers are real numbers 

Universal and negative judgment No X is Y 

No man is mortal 

No monkey is a tree climber 

No negative number is a positive number 

Particular and affirmative judgment Some X is Y 

Some men are mortal  

Some monkeys are tree climbers 

Some real numbers are integers 

Particular and negative judgment Some X is NOT Y 

Some men are NOT mortal 

Some monkeys are NOT tree climbers 

Some real numbers are NOT integers 
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So a syllogism is an argument consisting of two propositions called 

premises and a third proposition called the conclusion. 

 

Objectives: 

At the end of the unit, you would be able to: 

 recognise the propositions.          

 explain the validity of the arguments and tautologies. 

 explain the disjunctive and conjunctive normal forms.  

 explain the equivalence forms and inference rules. 

 

7.2 Statements, Propositions and Tautologies 

7.2.1 Definition 

A Proposition is a statement that is either TRUE or FALSE, but not both. 

7.2.2 Example 

(i) “x > 3” is a statement.  This statement is neither TRUE nor FALSE 

because the value of the variable x is NOTspecified.  Therefore “x > 3” is 

NOTa proposition. 

(ii) “10 > 3” is a statement.  This statement is TRUE.  Therefore “10 > 3” is a 

proposition. 

(iii) “10 < 3” is a statement.  This statement is FALSE (or NOTTRUE).  

Therefore “10 < 3” is a proposition. 

7.2.3 Examples 

(i) “x + y + 4 = 7” is a statement but it is NOTa proposition. 

(ii) “x  3” and “x  5” are statements but NOTpropositions 

(iii) “x  3 for all x such that x  5” is a statement.  This statement is TRUE.  

Therefore it is a proposition.                                
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7.2.4 Examples 

(i) “Bangalore is the capital of Karnataka” (TRUE statement).  Therefore it 

is a proposition. 

(ii) “Chennai is the capital of Sikkim” (FALSE statement). Therefore it is a 

proposition. 

(iii) “What is the time now ?”. This is NOT a statement. So this is NOT a 

proposition. 

(iv) “Read this carefully” is NOT a statement.  So this is NOT a proposition. 

7.2.5 Negation 

The negation of a statement is formed by means of the word NOT.  If “p” is a 

statement, then the negation of p is “~p”.  “~p” is read as “not-p”.  The 

symbol “~” is called “curl” or “twiddle” or “tilde”.  The notation “~p” is that of 

asserting the falsity of “p”. If “p” is considered to be FALSE, then “~p” will be 

considered to be TRUE. 

7.2.6 Example 

Let p be the statement “Bangalore is a city”.  Now ~p is the statement “Not, 

Bangalore is a city” (equivalently, “Bangalore is NOT a city”). 

7.2.7 Definition 

Let p be a statement.  The statement “it is the case that p” is another 

statement, called the negation of p. 

7.2.8 Examples 

(i) Let Q be the statement “All integers are real numbers”, then the 

negation of this statement is ~Q: NOT, all integers are real numbers or 

 ~Q: All integers are NOT real numbers. 

(ii) Consider the statement given below 

  S: All angles can be trisected using straightedge and compass alone. 

  ~S: There exists atleast one angle that cannot be trisected by using 

 straightedge and compass alone. 
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(iii) Consider the statement given below: 

       U: No angle can be trisected by using straightedge and compass  alone. 

        ~U: Some angles can be trisected by using straightedge and compass 

 alone. 

  The truth Table for the negation of a statement 

P ~P 

T F 

F T 

 Here T stands for “TRUE” and F stands for “FALSE”. 

7.2.9 Definition 

Let P and Q be statements. The statement “P and Q” (denoted by                    

P  Q) is TRUE when both P and Q are TRUE; and is FALSE otherwise.   

P  Q  is called the conjunction of P and Q. 

7.2.10 Example 

Consider the statement 

P: “The number twelve is rational and positive”,  

A translation of P into symbols is not possible, since the word “positive” is 

NOTa statement. If the statement P is changed to form: 

The number twelve is rational and the number twelve is positive. 

Then a direct translation is “A & B”, where “A” and “B” are translations given 

below. 

A: The number twelve is rational, B: The number twelve is positive. 

Truth Table for conjunction 

P Q P  Q 

T T T 

T F F 

F T F 

T F F 
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7.2.11 Example 

Let P be the statement that “Today is a Friday” and Q be the statement “It is 

raining today”. Then P  Q is the statement “Today is a Friday and it is 

raining today”. 

7.2.12 Example 

(i) He will succeed or die in the attempt. 

(ii) A simple closed curve in the plane divides it into two regions such that 

any point not on the curve is either inside or outside the curve. 

7.2.13 Definition 

The disjunction “or” is used to connect two classes (or sentences) to form a 

larger sentence. The meaning of this connection seems generally to be 

dependent on the meanings of the parts connected. If “P” and “Q” are 

statements, the “P  Q” is a statement that is TRUE either when “P” is 

TRUE or “Q” is TRUE or both are TRUE.   “P  Q” is FALSE only when both 

“P” and “Q” are FALSE. 

Truth Table for disjunction 

P Q P  Q 

T T T 

F T T 

T F T 

F F F 

 

7.2.14 Example 

Let P be the statement that “Today is a Friday” and q be the statement that 

“It is raining to day”.  The P  Q is the statement “Today is a Friday or it is 

raining today”. 

7.2.15 The Conditional (or Implication) 

The Conditional sentences are of type “if ………….., then…………” 
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7.2.16 Example 

Suppose x and y represent certain angles (see the following figure).  

Consider the following statements 

A: x and y have their sides parallel 

B: x = y 

The above two statements may be combined as: 

“If x and y have their sides parallel, then x = y” or “x and y having their sides 

parallel implies that x = y”. 

For this, consider the following diagram: 

                        Figure 7.1    Figure 7.2 

This figure represents two angles of 450 with their sides parallel. Therefore  

x = y. 

7.2.17 Definition 

Let P and Q be propositions. The implication (denoted by P  Q or                      

P  Q) is the proposition that is FALSE when P is TRUE and Q is FALSE; 

and TRUE otherwise.  In this implication P is called the hypothesis (or 

antecedent or premise) and Q is called the conclusion (or consequence). 

Truth Table for “Implication” is given below: 

P Q P  Q 

T T T 

T F F 

F T T 

F F T 

y = 450 x = 450 
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7.2.18 Examples 

(i) “If x > 10, then x > 2” (or “x > 10  x > 2”) is a TRUE statement 

(because if “x > 10” is TRUE, then “x > 2” is also TRUE) 

(ii) If “today is a Sunday, then tomorrow is a Monday”  (or today is a Sunday 

 tomorrow is a Monday) is TRUE. 

(iii) If “today is a Sunday, then tomorrow is a Saturday” is NOTTRUE. 

7.2.19 Note 

 “P  Q” can be read in any one of the following ways:  

(i) P implies Q 

(ii) Q is a (logical) consequence of P 

(iii) P is a sufficient condition for Q 

(iv) Q is a necessary condition for P 

(v) If P then Q 

(vi) If P, Q 

(vii) P only if Q 

(viii) Q if P 

(ix) Q whenever P. 

7.2.20 Example 

If “x = 5”, then “2x = 10” is a TRUE statement. 

7.2.21 Bi conditional:(or imply and implied by or iff): 

Let P and Q be propositions. The bi-conditional P  Q is the proposition 

that is TRUE when P and Q have the same truth values and is FALSE 

otherwise. 

P Q PQ 

T T T 

T F F 

F T F 

F F T 
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7.2.22 Note 

(i) p  q may be read as “p is and only if q” 

(ii) p  q means “p  q and q  p” 

(iii) It is clear that p  q is TRUE precisely when both p  q and q  p 

are TRUE. 

7.2.23 Definition 

A tautology is an expression, which has truth value T for all possible values 

of the statement variables involved in that expression. A contradiction is an 

expression, which has truth value F for all possible values of the statement 

variables involved in that expression. For example, PP is a tautology and 

PP is a contradiction 

7.2.24 Example 

Construct the truth table for ((p   q)  r)  (p  (q  r)) 

Solution: Let E denote the expression as in the following table. 

Table 7.1 

p q r p   q (p   q)  r p  (q  r)  E 

T T T F T T T 

T T F F T T T 

T F T T T T T 

T F F T F F T 

F T T F T T T 

F T F F T T T 

F F T F T T T 

F F F F T T T 

7.2.25 Example 

(In this example, we denote the truth value T by „1‟ and the truth value F by 

„0‟). Consider the statement (p  q)  r  where p, q and r are three 

propositions.  
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Table 7.2 

Truth table for (p  q)  r  

p q r p  q r  (p  q)  r  

0 0 0 0 1 0 

0 0 1 0 0 0 

0 1 0 1 1 1 

0 1 1 1 0 0 

1 0 0 1 1 1 

1 0 1 1 0 0 

1 1 0 1 1 1 

1 1 1 1 0 0 

 

7.2.26 Problem 

Show that [p  (p  q)]  p  is a contradiction. 

Solution: Now we write down the truth table  

Table 7.3 

P q p  q p  (p  q) p  [p  (p  q)]  p  

0 0 0 0 1 0 

0 1 1 0 1 0 

1 0 1 1 0 0 

1 1 1 1 0 0 

Observing the table, we can conclude that [p  (p  q)]  p  is always 

FALSE.  Hence [p  (p  q)]  p  is a contradiction. 

Self Assessment Question 

1. Verify whether or not the following are propositions. 

 (i) 1 + 1 = 2, (ii).  2 + 2 = 3, (iii) x + y = 5  x + y – 1 = 4, (iv). x = 2  

 x2 = 4.  

2. Construct the truth table for  p  q  
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7.3 Equivalence of Formulas  

7.3.1 Definition 

Let A and B be two statements involving the variables P1, P2...., Pn.  We say 

that A and B are equivalent if the truth value of A is equal to the truth value 

of B for every 2n-possible sets of truth values assigned to P1, P2, ..., Pn and 

is denoted by A  B.  In other words A   B is a tautology. 

7.3.2 Example 

Prove that (p  q)   p  q. 

Solution: 

p q p  q  p  q  

T T T T 

T F F F 

F F T T 

F F T T 

 

Therefore (p  q)   p  q. 

7.3.3 Example 

Prove that (p  q)   p   q 

Solution:  

p q  (p  q)  p  q  

T T F F 

T F F F 

F T F F 

F F T T 

 

Hence (p  q)   p   q. 
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7.4 Normal Forms  

7.4.1 Definition 

Let P1, P2 , ..., Pn be n statement variables. The expression 
* * *

1 2 ... nP P P    

where 
*
iP  is either Pi or Pi is called a minterm. There are 2n such 

minterms.  

The expression 
* * *

1 2 ... nP P P   , where 
*
iP  is either Pi or Pi is called a 

maxterm. There are 2n such maxterms.  

7.4.2 Example 

Let P, Q, R be the three variables. 

Then the minterms are: P  Q  R, P  Q   R, P   Q  R, P     R,  

P  Q  R,  P  Q   R,  P   Q  R,  P   Q   R. 

7.4.3 Definition 

(i) For a given formula, an equivalent formula consisting of disjunctions of 

minterms only is known as its disjunctive normal form (DNF) or sum of 

products canonical form.  

(ii) For a given formula, an equivalent formula consisting of conjunction of 

maxterms only is known as its conjunctive normal form (CNF) or 

product of sums canonical form.  

7.4.4 Note 

(i) DNF can be computed either by truth table or by direct computation. 

(ii) If the DNF for a formula F is known then disjunction of the minterms, 

which do not appear in the DNF of F is the DNF of  F. 

(iii) Since F    ( F), we can compute CNF of F using D‟Morgan‟s law. 

7.4.5 Example 

Obtain the DNF and CNF of the following formula: 

( P   Q)  (P    Q) 
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Solution: Let E be the expression that ( P   Q)  (P    Q). 

           E   ( P   Q)  ((P   Q)  (  Q  P))   

               ( P   Q)  (( P   Q)  (Q   P))  

                ( P   Q)  (( P    Q)  (Q   P))  

               (P  Q)  ((  P  Q)  ( P  P))  ( Q  Q)  (Q  P) 

               (P  Q)  ( P  Q)  (P  Q) 

               (P  Q)  ( P  Q), which is in disjunctive normal form. 

Now  E  (P   Q)  ( P   Q) or  

           E   ( E)  (P  Q)  (P  Q), which is the CNF. 

Using Truth Tables: Consider the following table. 

P Q E 

T T T 

T F F 

F T T 

F F F 

The DNF of E is the disjunction of the minterms with truth values T.  

Therefore,  

E  (P  Q)  ( P  Q). 

7.4.6 Example 

Obtain the DNF and CNF for  

(P  (Q  R))  ( P  ( Q   R)) 

Solution 

Let the expression E be (P  (Q  R))  ( P  ( Q   R)) 

Now E  ( P  (Q  R))  (P  ( Q   R)) 

     ( P  Q )  ( P  R)   (P   Q) (P   R) 

     ( P  Q  R)   ( P  Q   R)   ( P   Q   R)  ( P   Q  R) 

     (P   Q  R)  (P   Q   R)  (P  Q   R) 

     ( P  Q  R)  ( P  Q   R)  ( P   Q  R)  (P   Q  R)                

         (P   Q   R)  (P  Q   R). 
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This is the CNF for E. Now, 

 E  ( P   Q   R)  (P  Q  R). 

Therefore E   ( E)  (P  Q  R)  ( P   Q   R), which is the DNF 

of E. 

Self Assessment Question  

3. Write the following in the DNF and the CNF. 

(a)  P  Q 

(b) (P  Q)  ( P  R)  (Q  R). 

(c) P  ((P  Q)   ( Q   P)) 

7.5 Logical Inferences 

The main function of logic is to provide rules of inference or principles of 

reasoning. 

7.5.1 Definition 

Any conclusion, which is arrived at by following the rules is called a valid 

conclusion and argument is called a valid argument.  

Let A and B be two statement formulas. We say that “B logically follows from 

A” or “B is a valid conclusion of A”, if and only if A  B is a tautology, that is,  

A  B. 

7.5.2 Validity using truth table 

Let P1, P2, …,Pn be the variables appearing in the premises H1, H2, ..., Hm 

and the conclusion C. Let all possible combinations of truth values are 

assigned to P1, P2, …, Pn and let the truth values of H1, H2, ..., Hm and C are 

entered in the table. We say that C follows logically from premises H1, H2, 

..., Hm if and only if H1  H2  … Hm  C. This can be checked from the truth 

table using the following procedure: 

 Look at the rows in which C has the value F. 

 In every such row if at least one of the values of H1, H2, ..., Hm is F then 

the conclusion is valid. 
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7.5.3 Example 

Show that the conclusion C:  P follows from the premises 

H1:  P   Q, H2:  (Q   R) and H3:  R. 

Solution: Given that C:  P, H1:  P   Q, H2:  (Q   R) and H3:  R. 

P Q R H1 H2 H3 C 

T 

T 

T 

T 

F 

F 

F 

F 

T 

T 

F 

F 

T 

T 

F 

F 

T 

F 

T 

F 

T 

F 

T 

F 

T 

T 

F 

F 

T 

T 

T 

T 

T 

F 

T 

T 

T 

F 

T 

T 

F 

T 

F 

T 

F 

T 

F 

T 

F 

F 

F 

F 

T 

T 

T 

T 

 

The row in which C has the truth values F at least one of H1, H2, H3 has truth 

value F. Thus C logically follows form H1, H2, and H3. 

7.5.4 Validity using rules of Inference  

We now describe the process of derivation by which one demonstrates that 

a particular formula is a valid consequence of a given set of premises.  The 

following are the three rules of inference. 

Rule P: A premise may be introduced at any point in the derivation. 

Rule T: A formula S may be introduced in a derivation if S is tautologically 

implied by any one or more of the preceding formulas in the derivation.  

Rule CP: If we can derive S from R and a set of premises then we can 

derive R  S from the set of premises alone. 

Before we proceed with the actual process of derivation, we flat some 

important implications and equivalences that will be referred to frequently.  

Not all the implications and equivalences listed in tables respectively are 
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independent of one another. One could start with only a minimum number of 

them and derive the others by using the above rules of inference. 

7.5.5 Example 

Show that the conclusion C:  P follows from the premises  

H1:  P   Q, H2:  (Q   R) and H3:  R. 

Solution: We get  

                                       (1)  R                 Rule P (assumed premise) 

                                       (2)  (Q   R)    Rule P  

                             {2}     (3)  Q  R           Rule T 

                             {3}     (4) R   Q           Rule T 

                             {4}     (5)  R   Q       Rule T 

                             {1, 5} (6)  Q                  Rule T 

                                       (7)  P  Q          Rule P 

                                  {7} (8)  Q   P     Rule T 

                             {6, 8} (9)  P                  Rule T 

Hence C logically follows from H1, H2, and H3. 

7.5.6 Example 

Show that S  R is tautologically implied by (PQ)(P  R) (Q  S). 

Solution:    We have 

                                       (1)  P  Q          Rule P  

                             {1}      (2)  P  Q      Rule T  

                                        (3)  Q   S       Rule P 

                            {2, 3}    (4)  P  S      Rule T 

                                         (5)  S  P      Rule T (as P  Q   Q   P) 

                                         (6) P  R         Rule P 

                               {5, 6}  (7)  S  R      Rule T 

                                     {7} (8) S  R          Rule T 
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7.5.7 Example 

Show that R  S can be derived from the premises P  (Q  S),  R  P 

and Q. 

Solution: We get  

  (1) R Rule P  

                (2) R  P              Rule P  

               {2} (3) R   S             Rule T 

               {1, 3} (4) P                      Rule T 

                (5) P  (Q  S)  Rule P  

               {4, 5} (6) Q  S             Rule T 

                (7) Q                     Rule P 

               {7, 6} (8) S                     Rule T 

                (9) R  S            Rule CP    

7.5.8 Validity by Indirect Method 

In order to show that a conclusion C follows logically from the premises  

H1, H2, ..., Hm we assume that C is FALSE and consider C as an additional 

premise. If H1   H2  ...  Hm   C is a contradiction, then C follows 

logically from H1, H2, ..., Hm. 

7.5.9 Example 

Show that  (P  Q) follows from   P  Q. 

Solution: Assume   ( (P  Q)) as an additional premise. Then, 

    (1)    ( (P  Q))  Rule P  

{1} (2)  P  Q Rule T  

(3) P Rule T 

 (4)  P   Q Rule P 

{4} (5)  P Rule T 

{3, 5} (6) P   P Rule T 



Discrete Mathematics Unit 7 

Sikkim Manipal University Page No.: 163  

Therefore P   P is a contradiction. Hence by the indirect method of proof,  

(P  Q) follows from   P   Q.  

 

7.6 Summary 

Logic was discussed by its ancient founder Aristotle (384 BC – 322 BC) 

from two quite different points of view. On one hand he regarded logic as an 

instrument or organ for appraising the correctness or strength of the 

reasoning; On the other hand, he treated the principles and methods of logic 

as interesting and important topics of the study. The study of logic will 

provide the reader certain techniques for testing the validity of a given 

argument. Logic provides the theoretical basis for many areas of computer 

science such as digital logic design, automata theory and computability, and 

artificial intelligence. In this lesson we have discussed the truth tables, 

validity of arguments using the rules of inference.  Further, we studied the 

various normal forms and logical equivalences using the rules.  

 

7.7 Terminal Questions  

1. Prove that the equivalence  (p  q)   p   q. 

2. Show the validity of the following argument for which premises are 

given in the left and conclusion on the right: 

(a) P  Q, Q  R                             P  R 

(b)  Q, P  Q                                   P 

(c)  (P   Q),  Q  R,  R             P 

(d) (P  Q)  R,  R  S,  S            P   Q. 

3. Prove the following using the Rule CP if necessary: 

(a) P  Q  P  (P  Q) 

(b) P, P  (Q  (R  S))  Q  S 

(c) P  (Q  R), Q  (R  S)  P  (Q  S). 
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4. Show that the following statements constitute a valid argument “If A 

works hard then either B or C enjoys himself. If B enjoys himself then A 

will not work hard. If D enjoys himself then C will not. Therefore, if A 

works hard D will not enjoy himself.” 

5. “If there was a meeting then catching the bus was difficult.  If they 

arrived on time catching the bus was not difficult.  They arrived on time.  

Therefore there was no meeting”.  Show that the statement constitutes 

a valid argument. 

6. Show that R  S can be derived from the premises P  (Q  S),  R 

 P and Q. 

 

7.8 Answers 

Self Assessment Questions  

1.  (i) “1 + 1 = 2” is a TRUE statement and hence it is a proposition. 

(ii) “2 + 2 = 3” is a statement which is FALSE. Therefore, it is a 

proposition. 

(iii) “x + y = 5  x + y – 1 = 4” is a TRUE statement.  Therefore, it is a 

proposition. 

(iv) “x = 2  x2 = 4” is a TRUE statement. Therefore,  it is a proposition. 

2. Truth table for p  q  is given below 

 

p q p  

 

q  

 

p  q  

 

0 0 1 1 1 

0 1 1 0 0 

1 0 0 1 0 

1 1 0 0 0 
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3. (a) CNF: ( P  Q) 

          DNF: ( P   Q)  ( P  Q)  (P  Q) 

(b) DNF: (P  Q)  ( P  R)  (Q  R) 

 CNF: ( P  Q   R)  ( P  Q  R)  (P   Q  R)  (P  Q  R). 

(c) DNF: ( P  Q)  ( P   Q)  (P  Q) 

          CNF: ( P  Q). 
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Unit 8 Predicate Calculus  

Structure 

8.1 Introduction 

 Objectives 

8.2 Predicates 

8.3 Quantifiers  

8.4 Free and Bound Occurrences  

8.5 Rules of Inference 

8.6 Summary 

8.7 Terminal Questions  

8.8 Answers 

 

8.1 Introduction  

Let us first consider the two statements: 

Ram is a bachelor 

Smith is a bachelor. 

Obviously, if we express these statements by symbols, we require two 

different symbols to denote them. Such symbols do not reveal the features 

of these two statements; viz., both are statements about two different 

individuals who are bachelors. If we introduce some symbol to denote ―is a 

bachelor‖ and a method to join it with symbols denoting the names of 

individuals, then we will have a symbolism to denote statements about any 

individual‘s, being a bachelor. Now we introduce the predicates. 

 

Objectives: 

At the end of the unit, you would be able to 

 explain the fundamental idea of logical statements.          

 identify the symbolic representation of statements. 

 use the predicate formulas  

 use the logical quantifiers. 
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8.2 Predicates 

The part ―is a bachelor‖ is called a predicate. Consider the following 

argument. 

All the human beings 

Ram  is a human being. 

Therefore, Ram  is a mortal. 

We shall symbolize a predicate by a capital letter and individuals or objects 

in general by small letters. We shall soon see letters to symbolize 

statements as well as predicates without confusion. Every predicate 

describes something about one or more objects. 

We again consider the statements 

1. Ram is a bachelor. 

2. Smith is a bachelor. 

Denote the predicate ―is a bachelor‖ symbolically by the predicate letter B, 

―Ram ‖ by r, and ―Smith‖ by s. Then statements (1) and (2) can be written as 

B(r) and B(s) respectively.  In general, any statement of the type ―p is Q‖ 

where Q is a predicate and p is the subject can be denoted by Q(p).  

A predicate requiring m (m >0) names is called an m-place predicate. For 

example, B in (1) and (2) is a 1-place predicate. Another example is that ―L: 

is less than‖ is a 2-place predicate. In order to extend our definition to m = 0, 

we shall call a statement a 0-place predicate because no names are 

associated with a statement. 

8.2.1 Example 

Consider, now, statements involving the names of two objects, such as 

Jack is taller than Jill.                                  --------(1) 

Canada is to the north of the United States. --------(2) 
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The predicate ―is taller than‖ and ―is to the north of‖ are 2-place predicates 

names of two objects are needed to complete a statement involving these 

predicates. 

If the letter G symbolizes ―is taller than,‖ j1 denotes ―Jack,‖ j2 denotes ―Jill,‖ 

then statement (1) can be translated as G (j1, j2). Note that the order in 

which the names appear in the statement as well as in the predicate is 

important.  

Similarly, if N denotes the predicate ―is to the north of,‖ c: Canada, and s: 

United States, then (2) is symbolized as N(c, s). Obviously, N(s, c) is the 

statement ―The United States is to the north of Canada.‖ 

8.2.2 Examples 

3-place predicate: Susan sits between Ralph and Bill. 

4-place predicate: Green and Miller played bridge against Ram and Smith. 

8.2.3 Note 

An n-place predicate requires n names of objects to be inserted in fixed 

positions in order to obtain a statement.  

8.2.4 Definition 

A simple statement function of one variable is defined to be an expression 

consisting of a predicate symbol and an individual variable. Such a 

statement function becomes a statement when the variable is replaced by 

the name of any object. 

8.2.5 Example 

Let H be a predicate ‗is beautiful‘, s be the name ‗Sneha‘ and m be the 

name ‗Mythily‘. Then H(x) is a simple statement function.  

If we replace x by s or m, then H(x) becomes a statement, x is used as a 

place holder. 
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8.2.6 Note 

Statement functions are obtained from combining one or more simple 

statement functions and the logical connectives. Statement functions of two 

or more variables can be defined in a similar manner.  

8.2.7 Example 

In the statement function 

G(x, y): x is richer than y. 

If x and y are replaced by names ‗Raja‘ and ‗Kutti‘ then we have the 

statements:  

G(r, k): Raja is richer than Kutti. 

G(k, r): Kutti is richer than Raja. 

There is another way for obtaining statements. In this regard we introduce 

the notion of quantifiers such as ‗all‘ and ‗some‘. 

Self Assessment Question 

1. Give some examples of first order predicates. 

 

8.3 Quantifiers  

8.3.1 Definition 

The word ‗all‘ is called the universal quantifier and is denoted by (x) or x. 

This symbol is placed before the statement function.  

8.3.2 Example 

Consider the statement functions: 

M(x): is a mathematician. 

I(x): x is intelligent. Then, 

(x) (M(x)  I(x)) 

denotes the statement ―for all x, if x is a mathematician then x is intelligent‖. 
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8.3.3 Note 

The statements (x) (M(x)  I(x)) and (y) (M(y)  I(y)) are equivalent. 

8.3.4 Example 

Let G(x, y): x is richer than y. Then  

(x)(y) (G(x, y)   G(y, x)) 

denotes the statements ―For any x and any y, if x is richer than y then y is 

NOT richer than x‖. 

8.3.5 Definition 

The word ‗some‘ is called the existential quantifier and is denoted by x. 

This also means ‗for some‘, ‗there is at least one‘ or ‗there exists some‘. The 

symbol ! x is read ―there is a unique x such that‖. 

8.3.6 Example 

Let  

              M(x): x is a man 

   C(x): x is clever 

   I(x): x is an integer 

   E(x): x is even 

   P(x): x is prime. 

Then  

 x M(x) symbolizes ―There exists a man‖ 

 x (M(x)  C(x)) symbolizes ―There are some men who are clever‖. 

 x (I(x)  E(x)) symbolizes ―Some integers are even‖ or ―There are some 

integers which are even‖. 

! x (E(x)  P(x)) symbolizes ―There exists unique even prime‖. 

8.3.7 Definition 

Variables, which are quantified stand for only those objects, which are 

members of a particular set or class. Such a set is called the universe of 

discourse or the domain or simply universe. 

 



Discrete Mathematics Unit 8 

Sikkim Manipal University Page No.: 171 

8.3.8 Note 

The universe may be, the class of human beings, or numbers (real, 

complex, and rational) or some other objects. The truth value of a statement 

depends upon the universe. 

8.3.9 Example 

Consider the predicate Q(x): x is less than 10 and the statements (x) Q(x) 

and  x Q(x). 

Now, consider the following universes: 

U1: {-1, 0, 1, 2, 4, 6, 8} 

U2: {3, -2, 12, 14, 10} 

U3: {l0, 20, 30, 40} 

The statement (x) Q (x) is true in U1 and false in U2 and U3. 

The statement  x Q(x) is true in U1 and U2 and false in U3. 

8.3.10 Example 

Let the universe of discourse be the set of integers. Determine the truth 

values of the following sentences: 

1. (x) (x2  0) 

2. (x) (x2-5x+6 = 0) 

3. (x) (x2-5x+6 = 0) 

4. (y)( x (x2 = y))  

Solution: 1. True, 2. False, 3. True, 4. Flase. 

8.3.11 Example 

Consider the statement ―Given any positive integer, there is a greater 

positive integer.‖ Symbolize this statement with and without using the set of 

positive integers as the universe of discourse. 
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Solution:  

WITH Universe of discourse:  

Let the variables x and y be restricted to the set of positive integers.  

Then the above statement can be paraphrased as follows: For all x, there 

exists a y such that y is greater than x. If G(x, y) is ―x is greater than y‖ then 

the given statement is – 

(x) (y) (G(y, x). 

WITHOUT universe of discourse: Let P(x) stands for x is a positive integer.  

Then we can symbolize the given statement as (x) (P(x)  (y) (P(y)   

G(y, x))). 

Self Assessment Questions  

2. Translate each of the statement into symbols, using quantifiers, 

variables and predicate symbols. 

  Let P(x): x can speak Kannada and Q(x): x knows the language C++  

(a) There is a student who can speak Kannada and who knows C++ 

(b) There is a student who can speak Kannada but does not know C++ 

(c) Every student either can speak Kannada or knows C++ 

(d) No student can speak Kannada or knows C++. 

3. Symbolize the statement ―All men are giants.‖ 

 

8.4 Free and Bound Occurrences  

8.4.1 Definition 

The expression P(x1, x2, …, xn) where x1, x2, …, xn are individual variables 

and P is an n-place predicate, is called an atomic formula. 

For example: R, Q(x), P(x, y), A(x, y, z), P(a, y) …. etc. 

 



Discrete Mathematics Unit 8 

Sikkim Manipal University Page No.: 173 

8.4.2 Definition 

A well-formed formula (wff) of predicate calculus is obtained by using the 

following rules. 

(a) An atomic formula is a wff. 

(b) If A is a wff, then  A is a wff. 

(c) If A and B are wff, then (A  B), (A  B), (A  B) and (A ⇌ B) are also 

wff. 

(d) If A is a wff and x is any variable, then (x)A and (x) A are wff. 

(e) Only those formulas obtained by using rules (1) to (4) are wff.  

8.4.3 Definition 

In a formula a part of the form (x) p(x) or  x p(x) is called an x-bound part. 

Any occurrence of x in an x-bound part is called a bound occurrence of x 

while any occurrence of x or of any variable that is not a bound occurrence 

is called a free occurrence. The formula p(x) either in (x) p(x) or  x p(x) is 

called the scope of the quantifier. In a statement every occurrence of a 

variable must be bound and no variable should have a free occurrence. 

8.4.4 Example 

Consider the following formulas: 

(x)P(x, y)  ----------------------------------------------(1) 

(x)(P(x)  Q(x))  ------------------------------------ (2) 

(x) (P(x)  (y)R(x, y))  -----------------------------(3) 

(x)(P(x)  R(x))  (x)(P(x)—.Q(x))  --------------(4) 

(x)(P(x)   Q(x)) ------------------------------------- (5) 

(x)P(x)  Q(x) -----------------------------------------(6) 

Observations:  

In (1), P(x, y) is the scope of the quantifier, and both occurrences of a are 

bound occurrences, while the occurrence of y is a free occurrence. 
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In (2), the scope of the universal quantifier is P(x)  Q(x), and all 

occurrences of x are bound. 

In (3), the scope of (x) is P(x)  (y) R(x,y), while the scope of  (y) is R(x, 

y). All occurrences of both x and y are bound occurrences. 

In (4), the scope of the first quantifier is P(x)  R(x), and the scope of the 

second is   P(x)  Q(x). All occurrences of x are bound occurrences. 

In (5), the scope of (x) is P(x)  Q(x).  

In (6), the scope of (x) is P(x), and the last occurrence of x in Q(X) is free. 

8.4.5 Example 

Symbolize the following: 

1. All birds can fly. 

2. All babies are innocent. 

3. There is an integer such that it is odd and prime. 

4. Not all birds can fly. 

Solution: We get 

1. Denote B(x): x is a bird; F(x): x can fly. 

 Then the symbolic form of ―All birds can fly‖ is (x) (B(x) — F(x)) 

2. Denote B(x): x is a baby; I(x): x is innocent. 

 Then the symbolic form of ―All babies are innocent‖ is (x) (B(x)  I(x)) 

3. Denote O(x): x is odd; P(x): x is prime. 

 Then the symbolic form of ―There is an integer such that it is odd and 

 prime‖ is  

  x (O(x)  P(x)). 

4. B(x): x is a bird; F(x): x can fly. 

 Then the symbolic form of ―Not all birds can fly‖ is   

  [(x)(B(x)  F(x))] or  x (B(x)   F(x)). 
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Self Assessment Question 

4. Symbolize the expression ―All the world respect selfless Leaders‖. 

 

8.4.6 Example 

Let  

P(x): x is a person 

F(x, y): x is the father of y 

M(x, y): x is the mother of y. 

Write the predicate ― x is the father of the mother of y‖ 

Solution: In order to symbolize the predicate we name a person called z as 

the mother of y. Obviously, we want to say that x is the father of z and z 

mother of y.  

It is assumed that such a person z exists. We symbolize the predicate 

(z) (P(z)  F(x, z)  M(z, y))  

8.4.7 Example  

Symbolize the expression ―All the world loves a lover.‖ 

Solution: First note that the quotation really means that everybody loves a 

lover. 

Now let P(x): x is a person; L(x): x is a lover; R(x, y): x loves y.  

The required expression is  

(x) (P(x)  (y)(P(y)  L(y)  R(x, y))). 

 

Self Assessment Question 

5. Write the negation of the following. 

(a) For each integer x, if x is even then x2 + x is even. 

(b) There is an integer x such that x2 = 9.  
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8.5 Rules of Inference  

8.5.1 Definitions 

(a) Universal specification (US): If (x) P(x) is assumed to be true then the 

universal quantifier can be dropped to obtain P(c) is true, where c is an 

arbitrary object in the universe. 

(b) Universal generalization (UG): If P(c) is true for all c in the universe 

then the universal quantifier may be prefixed to obtain (x) P(x). 

(c) Existential specification (ES): If  x P(x) is assumed to be true then 

P(c) is true for some element c in the universe. 

(d) Existential generalization (EG): If P(c) is true for some element c in the 

universe then  x P(x) is true. 

8.5.2 Example 

Consider the following statements: 

All men are selfish. 

All kings are men. 

Prove that all kings are selfish. 

Solution: Let 

M(x): x is a man. 

K(x): x is a king. 

S(x): x is selfish. 

The above arguments are symbolized as, 

(1) (x)M(x)   S(x))            P 

(2) M(c)  S(c)                  US, (1) 

(3) (x)(K(x)   M(x))           P 

(4) K(c)  M(c)                   US, (3) 

(5) K(c)  S(c)                    (2), (4) and inference rule 

(6) (x) (K(x)  S(x))            UG 
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8.5.3 Example 

Show that (x)(P(x)  Q(x))  (x)(Q(x)  R(x))   (x)(P(x)  R(x)) 

Solution: The given statement is symbolized as 

(1) (x)(P(x)  Q(x)) P 

(2) P(y)   Q(y) US (1) 

(3) (x)(Q (x)  R(x)) P 

(4) Q(y)  R(y) US (3) 

(5) P(y)  R(y) (2), (4), and Inference Rule 

(6) (x)(P(x)  R(x))  UG, (5). 

8.5.4 Example 

Show that  x(P(x)  Q(x))   ( xP(x))  ( x Q(x)). 

Solution: The given statement can be symbolized as 

(1)  x(P(x)  Q(x))  P 

(2) P(y)  Q(y) ES, (1), y fixed 

(3) P(y) T 

(4) Q(y) T 

(5)  x P(x) EG, (3) 

(6) x Q(x) EG, (4) 

(7) xP(x)   xQ(x) T  

8.5.5 Formulas with more than one quantifiers  

Consider the case in which the quantifiers occur in combinations. 

If P(x, y) is a 2-place predicate formula, then the following possibilities exist. 

(x)(y)P(x, y); (x)(y)P(x, y); (x)(y)P(x, y) 

(x)(y)P(x, y); (y)(x)P(x, y); (y)(x)P(x, y) 

(y)(x)P(x, y); (y)(x)P(x, y) 

There is logical relationship among sentences with two quantifiers if the 

same predicate is involved in each sentence.  
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Figure 8.1 

8.5.6 Example 

Show that  P(a, b) follows logically from (x) (y) P(x, y)  W(x, y) and  

W(a, b). 

Solution: We get  

(1) (x)(y) P(x, y)  W(x, y)           P 

(2) (y) P(a, y)  W(a, y)                US, (1) 

(3) P(a, b)  W(a, b)                      US, (2)   

(4)  W(a, b)                                    P 

(5)  P(a, b)                                     T, (3), (4) 

 

8.6 Summary 

In this lesson we discussed the n-place predicates, formulas with more than 

one quantifiers and writing the symbolic form of the predicate statements. 

The role of free and the bound occurrences in proving the mathematical 

theorems are very useful. The universal and existential quantifiers are 

defined.  With the help of the rules of inference, we have derived the logical 

implications and the equivalences.   
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8.7 Terminal Questions  

1. Symbolize the following: 

(a) Not all birds can fly. 

(b) Some men are giants. 

(c) Not all men are giants. 

(d) All flowers are beautiful. 

(e) Not every graph is planar.  

2. Let U be the set of integers. Determine the truth values of the following: 

(a) (x)(x2 – x – 1  0) 

(b)  x(x2 - 3 = 0) 

(c) (x)( y(x2 = y)) 

(d) (x)(x2 — l0x + 21 = 0). 

3. Write the negations of the following expressions: 

(a) There is an integer x such that x is even and x is prime. 

(b) Not all graphs are planar. 

(c) All men are bad. 

(d) Every graph is not connected. 

4. Show that P(x)  (x)Q(x)   x(P(x)  Q(x)). 

5. Show that P(a) logically follows from (x)( P(x)  Q(x)),  (x) ( Q(x)). 

6. Check the validity of the following arguments: 

(a) All men are mortal. Socrates is a man. Therefore, Socrates mortal. 

(b) Lions are dangerous animals. There are lions. Therefore, there are 

dangerous animals. 

(c) Some rational numbers are powers of 3. All integers are national 

numbers. Therefore, some integers are powers of 3. 
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8.8 Answers 

Self Assessment Questions: 

1.   (i)   All men are mortal 

 (ii)  Given any thing in the Universe, it is mortal 

 (iii) California is human 

 (iv) Aristotle is human 

 (v)  there exists a thing in the Universe which is mortal 

 (vi) there exists atleast one human who is mortal  

2. (a) x (P(x)  Q(x)) 

     (b) x (P(x)   Q(x)) 

     (c) x (P(x)  Q(x)) 

     (d)   x  (P(x)  Q(x)) 

3. Let G(x): x is a giant; M(x): x is a man. 

 WITHOUT universe of discourse: (x) (M(x) — G(x)). 

 WITH universe of discourse as ―class of men‖: (x)G(x). 

4. We can write 

 P(x): x is a person. 

 S(x): x is a selfless leader.  

 R(x, y): x respects y. 

 Then the given expression is  (x) (P(x)  (y) (P(y)  S(y)  R (x, y)). 

5.  (a). The given expression is (x) (E(x)   S(x)), where E(x): x is even, 

 S(x) : x2 + x is even. Therefore the Negation is x (E(x)   S(x)). 

 (b). The given expression is  x P(x) where P(x): x2 = 9. Therefore the  

  Negation is (x) ( P(x)).  
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Unit 9 Finite Boolean Algebras  

Structure 

9.1 Introduction 

 Objectives 

9.2 Boolean Algebras 

9.3 Functions of Boolean Algebras 

9.4 Gating Networks 

9.5 Summary 

9.6 Terminal Questions 

9.7 Answers  

9.1 Introduction 

Boolean algebra is algebra of logic.  One of the earliest investigators of 

symbolic logic was George-Boole (1815-1864) who invented a systematic 

way of manipulating logic symbols, which is referred as  Boolean Algebra.  It 

has become an indispensable tool to computer scientists because of its 

direct applicability to switching theory of circuits and the logical design of 

digital computers. The symbols 0 and 1 used in this unit have logical 

significance. Some special type of net-works is used in digital computers for 

the processing of information in it. These networks are represented by block 

diagrams. Logic circuits are structures, which are built up from certain 

elementary circuits called logic gates. In this unit we shall represent a 

Boolean function in a gating network. Various gates will be used for 

representing the expressions.  

Objectives: 

At the end of the unit you would be able to 

 extend the notion of Boolean algebra from a lattice. 

 identify and explain various properties of Boolean algebras 

 write the dnf and cnf of a Boolean function. 

 explain several applications of Boolean algebras in science and engineering.  

 describe the Boolean functions and gating networks. 
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9.2 Boolean Algebras 

9.2.1 Definition 

A Boolean Algebra is a complemented distributive lattice. The operations  

and  are also denoted by    and *.  We denote a * b is some times as ab.  

The bounds are denoted by 1 and 0. Thus a Boolean algebra B with 

operations  and * and bounds 1 and 0 satisfy the following properties:  

1. a  a = a;                                           a * a = a  

2. a  b = b  a;                                    a * b = b*a. 

3. a  (b  c) = (a  b)  c;                  a * (b *c) = (a * b) * c;  

4. a  (a * b) = a; a  (a * b) = a;  

5. a  (b * c) = (a  b) * (a  c);            a * (b  c) = (a * b)  (a * c) 

6. 0 ≤ a for all a  B;                               a ≤ 1 for all a  B;  

7. a  0 = a;                                            a * 1 = a; 

8. a  1 = a;                                            a * 0 = 0;  

Note: For a  B, let a1 be the (unique) complement of a. 

9. a  a1 = 1;                                            a * a1 = 0  

10. 11 = 0;                                                 01 = 1; 

11. (a  b)1 = a1 * b1;                               (a * b)1 = a1  b1  

Note: 

(i) Properties 1 to 4 are lattice properties; 5 are distributive properties; 6 

and 8 are properties of bounds; 9 and 11 are properties of 

complements.  

(ii) The properties 11 are called De’ Morgan laws.   

9.2.2 Definition: A Boolean algebra with finite number of elements is called 

a finite Boolean algebra. 
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9.2.3 Example  

Let S be a finite set. Consider the lattice (P(S), ) with operations  

 and , in which the universal upper bound is S, the universal lower bound 

is  (empty set), and the complement of any set T in P(S) is the set S - T. 

Take S = {a, b, c} 

     P(S) = {s, {a}, {b}, {c}, {a, b}, {b,c}, {a, c} } 

Then (P(S), ) is a lattice. The Boolean algebra is represented by the 

following diagram.  

 

 

        

   

 

Figure  9.1 

9.2.4 Example 

Let B = {0, 1}. The operations  and  are given in the following tables:  

 

 

 

 

Figure  9.2 

The complement of ‘0’ is 1 and vice-versa. Then (B,, , –) is a Boolean 

Algebra.  

9.2.5 Example 

Let Bn be the set of n-tuples of 0’s and 1’s.  For a, b  Bn, define  

a  b = (a1  b1, a2  b2, …, an  bn) and a * b = (a1  b1, a2  b2, …, an  bn) 

where a = (a1, a2, …, an) and b = (b1, b2, …, bn). 

                     

     0     1                   
                       
0     0     1 
                       
1     1     1    

                                               

     0     1                   
                       
0     0     0 
                       
1     0     1    

{a} 

{a, b} 

{c} 

{b, c} {a, c} 

{b} 

S 

 
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Now ai = 0 or 1 and bi = 0 or 1 for i = 1, 2, ..., n.  Also a1 = (a1
1, a2

1, …, an
1) 

and b = (b1
1, b2

1, …, bn
1) where  and  complementation are as in above 

example over {0, 1}.  Then (Bn,  , *) is a Boolean algebra with bounds 0n 

and 1n where 0n = (0, 0, …, 0) and 1n = (1,1,…,1). 

9.2.6 Theorem 

If S1 = { x1, x2, ….. xn} and S2 = {y1, y2, …. yn} are any two finite sets with n 

elements, then the lattices (P(S1),  ) and (P(S2),  ) are isomorphic. 

Consequently, the Hasse diagrams of these lattices may be drawn identically. 

Proof: Arrange the sets as shown in Fig. 9.3: so that each element of S1 is 

directly over the correspondingly numbered element in S2 

 

 

 

 

Figure  9.3 

Let A be a subset of S1  

Define f (A) = subset of S2 consisting of all elements that correspond to the 

elements of A (see fig. 9.4)) 

 

 

 

 

 

Figure  9.4 

It can be easily seen that f is one one and onto. Also A  B if and only if   

f (A)  f (B) for all A, B  P(S1). 

Therefore, the lattices (P(S1), ) and (P(S2), ) are isomorphic. 

 S1  :  x1      x2 ... xn 
 
 
 S2  :  y1 y2 …  yn 

f (A) 

 S1  :  x1      x2  x3 x4 …xn 
  
 S2  :  y1 y2 y3  y4 …yn 

A 
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9.2.7 Example 

Let S = {a, b, c}, T = {2, 3, 5}. Define f : P(S)  P(T) by  

f ({a}) = {2}, f ({b}) = {3}, f ({c}) = {5},  

f ({a, b}) = {2,3}, f ({b, c}) = {3, 5}, f ({a, c}) = {2, 5} 

f ({a, b, c}) = {2, 3, 5}, f () =  

The Boolean lattices (P(S), ) and (P(T) , ) are isomorphic.  

9.2.8 Note 

(a) Any finite Boolean algebra has exactly 2n elements for some positive 

integer n. Also there is a unique (up to isomorphism) Boolean algebra 

of 2n elements for every n > 0. 

(b) From the above theorem, it is clear that the lattice (P(S), ) is 

completely determined as a poset by the number  |S| and does not 

depend in any way on the nature of the elements in S.  

(c) Each lattice (P(S), ) is isomorphic to Bn (n– tuples, Boolean Algebra, 

over {0, 1}) where n = |S|  

9.2.9 Example 

Consider the lattice,  

D6 = {x  Z+ 
 x is a divisor of 6}= { 1, 2, 3, 6} 

Define f = D6  B2 = { 0, 1} by  

f (1) = 00, f (2) = 10, f (3) = 01, f (6) = 11 

Then f is an isomorphism. These can be represented by the following 

diagrams:  

 

 

 

 

 

Figure  9.5 

 

2  3 

  6 

  

 
1 

D 6 B 2 
  11 

  

 01 10   

  
00 
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9.2.10 Example   

(i) The lattice D20 = {1, 2, 4, 5, 10, 20} has 6  2 n (for any positive integer n) 

elements and hence not a Boolean algebra. 

(ii) The lattice  

 D30 = {1, 2, 3, 5, 6, 10, 15, 30} 

 has 23 elements and hence a Boolean algebra. Observe that D30 is 

isomorphic to B3 (over {0, 1}), where the isomorphism:  

 f:D30B3 defined by  

 f(1) = 000,  f (2) = 100, f (3) = 010, f (5) = 001, f (6) = 110,  f (10) = 101,                  

f (15) = 011, f (30) = 111. 

9.2.11 Theorem 

Let n =  p1  p2  …. pk where  pi  (1  i  k) are distinct primes. Then Dn is a 

Boolean algebra.  

9.2.12 Example  

a) 210 = 2. 3. 5. 7. Therefore, D210 is a Boolean algebra.  

b) 66 = 2. 3. 11, D66 is a Boolean algebra.  

c) 646 = 2. 17. 19, D646 is a Boolean algebra.  

9.2.13 Theorem 

If n is a positive integer and p2 | n, where p is prime number, then Dn is not a 

Boolean algebra.  

9.2.14 Example 

a) Take n = 40, then = 23 . 5, so 2 divides n three times. Therefore, D40 is 

not a Boolean algebra.  

Self Assessment Question 

1. Test  whether D75 is a Boolean Algebra. 
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9.2.16 Note 

(i) Let (A,  ) be a finite lattice with a universal lower bound. For any non 

zero element b, there exists at least one atom (smallest non zero 

element in a Boolean algebra) ‘a’ such that a  b.  

(ii) There is an isomorphism from Boolean lattice (A,  ) to (P(S) ,  ), 

where S is the set of atoms.  

9.2.17 Theorem 

Let (A, , , – ) be a finite Boolean algebra. Let S be the set of atoms. Then 

(A, , , – ) is isomorphic to the algebraic system defined by the lattice  

(P(S) ,  ). 

 

9.3 Functions of Boolean Algebras  

9.3.1 Definition  

Let (A, , , –) be a Boolean algebra. A Boolean expression over (A, , , – ) 

is defined as : 

(i) 0 and 1 are Boolean expressions 

(ii) x1, x2, …, xn are Boolean expressions 

(iii) If  is a Boolean expression, then 1 is also a Boolean expression.  

Further, if 1 and 2 are Boolean expressions then (1)*(2) and (1)  

(2) are also Boolean expressions.      

(iv) If 1x and 2x  are Boolean expressions, then 1x , 1x   2x , 1x   2x , 2x  

are Boolean expressions.  

(v) No strings of symbols except those formed according to rules (i) to (iv) 

are Boolean expressions. 

9.3.2 Definition 

Two Boolean expressions are called equivalent if one can be obtained from the 

other by a finite number of applications of the identities of Boolean Algebra. 
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9.3.3 Example 

a) 0  x  

b)  1 2x x    1 3x x  

c) 2 3  

are Boolean expressions. 

Self Assessment Question  

2. Write an equivalent Boolean expression for E (x1, x2, x3) = 

   3121 xxxx  . 

3. Find equivalent Boolean expression for       yxyx  1
 

4. Are there any Boolean algebra having 3 or 5 elements? Why or why not ?  

9.3.4 Definition 

Let f( 1x , 2x , ..., nx ) be a Boolean expression of n variables over a Boolean 

algebra {0, 1} (That is, for an assignment of values 1 (true) or  

0 (false) to the variables). The values of f for various values of 1x , 2x , 

..., nx can be listed in a table is called truth table.  

9.3.5 Notation 

: nf B B  where B = { 0, 1}  1 2, , ..., nf x x x  = 0 or 1 

where each 1x   {0, 1}, 1  i  n 

(f is called a Boolean function on n variables)  

9.3.6 Example 

   1 2 3 1 2 3, ,E x x x x x x       
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       1 2 1 3,x x x x    over ({0, 1}), ,  , –) tabulated below.  

(x1, x2, x3) E(x1, x2, x3) 

(0, 0, 0) 

(0, 0, 1) 

(0, 1, 0) 

(0, 1, 1) 

(1, 0, 0) 

(1, 0, 1) 

(1, 1, 0) 

(1, 1, 1) 

0 

0 

1 

0 

1 

1 

0 

1 

9.3.7 Definition 

A Boolean expression on n variables (x1, x2, ..., xn) is said to be a min-term if 

it is of the form,  

              1 2 ... nx x x   , where  

              i i ix x or x  

9.3.8 Definition 

A Boolean expression over ({0, 1}, , , –) is said to be in disjunctive normal 

form (denoted as, dnf )if it is the join of min-term. (dnf also called as sum of 

products of canonical form). 

9.3.9 Example 

The expression 1 2 3 1 2 3 1 2 3, ,x x x x x x x x x       min-terms.  

The expression  

         1 2 3 1 2 3 1 2 3x x x x x x x x x         is in dnf. 

9.3.10 Example 

Write the following Boolean expressions in an equivalent sum of products 

canonical form in three variables x1, x2, x3. 

(i) x1 * x2
1   (ii) x2  x3

1  (iii) (x1  x2)
1  (x1

1 * x3). 
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Solution: From the laws of Boolean algebra, we get – 

(i) x1 * x2
1   = x1 * x2

1 * 1 

                    =   x1 * x2
1 * (x3  x3

1)  

                    =  (x1 * x2
1 * x3)   (x1 * x2

1 * x3
1) 

(ii) x2  x3
1  = [x2 * (x3  x3

1)]  [x3
1* (x2  x2

1)]  

                    = (x2 * x3)   (x2 * x3
1)  (x3

1* x2) (x3
1 
 x2

1) 

                    =  (x2 * x3)   (x2 * x3
1)  (x3

1 
 x2

1) 

                    = [(x1  x1
1) * (x2 * x3)]  [(x1  x1

1) *  (x2 * x3
1)]  [(x1  x1

1) * 

 (x2
1 
 x3

1)]. 

 = [(x1 * x2 * x3)  (x1
1 * x2 * x3)  (x1  x2 * x3

1)  (x1
1 * x2 * x3

1) 

   (x1
 * x2

1 * x3
1)  (x1

1 * x2
1 * x3

1)]. 

(iii) Similar. 

9.3.11 Definition 

A Boolean expression of n variables x1, x2, ... xn is said to be a max-term if it 

is of the form 1 2 ... nx x x    where i i ix x or x  

9.3.12 Definition 

A Boolean expression over ({0, 1}, ,  , –) is said to be in conjunctive 

normal form (denoted as, Cnf ) if it is a meet of max-terms. (cnf is also 

called as product of sums canonical form). 

For example, ( 1x  2x  3x  )  ( 1x  2x  3x  ) ( 1x  2x  3x  ) is in Cnf . 

9.3.13 Note 

(i) Consider f : {0, 1}
n
 {0, 1} 

  To each ( 1x , 2x , …, nx ), we have min-term,  1 2 ... nx x x   , where 

 ix  =    ix if the 
th

i  component of the n-tuple is 1,  and  ix  = ix  if the 
thi  

 component of the n tuple is 0. 

 



Discrete Mathematics Unit 9   

Sikkim Manipal University Page No.: 191 

(ii) Given f: {0, 1}
n

  {0, 1}, we can obtain a Boolean expression in dnf 

(respectively, cnf) corresponding to this function by having a min-term 

(respectively, max-term), corresponding to each ordered n–tuple of 0s 

and 1s for which the value of the function f is 1 (respectively, 0). 

(iii) cnf of f  is the complement of dnf of f  

 f : {0, 1}
n

  {0, 1}, max-term,  

      1 2 ... nx x x    where  

 
0

1

th
i

j th
i

x if the i component of n tuple is
x

x if the i component of n tuple is

 
 



 

9.3.14 Example 

Consider the Boolean expression, 

         1 2 3 1 2 3
, ,f x x x x x x    

 1 2 3 1x x x x       
 

  over ({0, 1}, , , – ). Write dnf and cnf. 

Solution: 

Table 9.1 

x1  x2 x3 f  f  

0   0   0 

0   0   1 

0   1   0 

0   1   1 

1   0   0 

1   0   1 

1   1   0 

1   1   1 

0 

0 

0 

0 

1 

0 

1 

1 

1 

1 

1 

1 

0 

1 

0 

0 
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Min-terms: 1 2 3 1 2 3 1 2 3, ,x x x x x x x x x       

dnf f:      1 2 3 1 2 3 1 2 3x x x x x x x x x         

Maxterm: 1 2 3 1 2 3 1 2 3, ,x x x x x x x x x      ,                  

1 2 3 1 2 3,x x x x x x     

Cnf:      1 2 3 1 2 3 1 2 3x x x x x x x x x         

                1 2 3 1 2 3x x x x x x       

Alternatively, cnf of can be found as follows: 

dnf  f        1 2 3 1 2 3 1 2 3x x x x x x x x x         

                1 2 3 1 2 3x x x x x x       

  fdnf        1 2 3 1 2 3 1 2 3x x x x x x x x x         

                     1 2 3 1 2 3x x x x x x       

                   1 2 3 1 2 3 1 2 3x x x x x x x x x          

                        1 2 3 1 2 3x x x x x x       

                                 = cnf f 

Self Assessment Question 

5. Write the truth table for f1(x1, x2) = x1  x2, f2(x1, x2) = x1  x2 and f3(x1) = 

x1
1 

 

9.4 Gating Networks  

9.4.1 Definition 

(i) Two Boolean expressions of n variables are said to be equivalent if they 

assume the same value for every assignment of values to the n variables.   
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(ii) Some switches or switching circuits may be represented by some new 

type of diagrams, which are called as gates.  By using these gates, we 

can represent any switching circuit as a combination of the gates. This 

is a symbolic representation.       

(iii)  From (i) we can conclude that a gate (or a combination of gates) is  a 

polynomial p.   

(iv) A symbolic representation (that is, a combination of gates) which 

represents a polynomial is called a gating network.  

9.4.2 Notation 

Different gates that we use are given below: 

 

 

 

Fig.  9.6 

If the input is x then the output is converted into x1 by an inverter. 

 

 

 

Fig.  9.7 

AND Gate: If there be two or more inputs then the output will be a 

function of those inputs given below – 

 

 

 

 

Fig.  9.8 

 

 

(i) identity-gate (symbolizes   x); 

 

a a 

(iii) 

AND-gate  
(Symbolizes)   
x1x2 … xn); 

a1 

a2 

: 

an 

a1a2 … an 

(ii) 
NOT-gate  (or  inverter)                                                    

(symbolizes  x1); 

 

a1 a 
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OR gate: It converts two and more inputs into a single function given as 

follows.  

 

 

 

 

Fig.  9.9 

 

We also use a small black disk either before or after one of the other gates 

to indicate an inverter.  

9.4.3 Example 

  

 

 

 

 

 

 

Fig.  9.10 

 

9.4.4 Note 

In Boolean algebra, we have three basic operations namely, AND, OR and 

NOT.  Some other operations can be defined in terms of these operations.   

The NAND operation is the complement of OR operation and also written as 

not-OR and uses an OR system followed by a small circle.  Thus a NOR 

gate is equivalent to an OR gate followed by a NOT gate.   

The NAND operation is the complement of AND operation and written as 

not-AND and uses an AND symbol followed by a small circle.  

(iv) 

OR-gate  

(symbolizes          

x1 + … + xn) 

 

a1 

a2 

: 

an 

a1 + … + an 

a2 
a1a2

1 
a1 (ii) 

a2 
(a1a2)

1 
a1 (i) 
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Fig.  9.11 

9.4.5 Example 

For the expression f = (x  y  z)  (x  y1
 z)  (x1  y) design the logic 

diagram.  

Solution: The following logic diagram shows the given function.  

 

Fig.  9.12 

 

(iii) 
a2 

(a1a2)
1 

a1 
NAND-gate or 

Sheffer-operation 

a2 

a1 
a1

1
 + a2     Subjunction-gate (i) 

a2 

a1 
(a1 + a2)

1   NOR-gate or  

                 Pierce-operation (ii) 
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9.4.6 Example 

Find the Boolean expression for the following logic diagram: 

 

Fig.  9.13 

 

Solution: ABC1 + BC1 + A1B. 

9.4.7 Problem 

Write down the gating network for the polynomial   p = (x1
1
 x2)

1 + x3. 

Solution: The required gating network is given in  the Figure. 

  

 

 

 

Fig.  9.14 

 

 

a3 
a2 

a1 

P (a1 , a2, a3) 
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9.4.8 Problem: Find  

(i) the polynomial p which, corresponds to the gating network given in the 

Figure.  

(ii) a simplified gating network, which operates in the same way as the 

gating network given in Figure. 9.15 

 

 

 

 

 

 

 

 

 

Fig.  9.15 

Solution: 

(i) The polynomial that represents the given gating network is 

 p = ((x1x2)
1x3 + x4) (x1x2 + x3

1
 x4). 

(ii) By using the Quine-Mc Cluskey algorithm we get a simplified form   

 q  = x1x2x4 + x3
1
 x4   of   p. 

 

 

 

 

 

Fig.  9.16 

 

  Now, the gating network, which represents q is given by the Figure.   

 

a4 

a3 

a2 

a1 

a4 

a3 

a2 

a1 
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9.5 Summary 

This unit provides the fundamental idea of the algebraic system namely 

Boolean algebra with two binary operations (join and meet) and a unary 

operation (complementation). Several properties of the Boolean algebras 

were discussed. You are now able to know the application of Boolean 

algebra in various branches like computer science, electrical engineering 

(switching networks), and communication engineering. Particularly, devices 

such as mechanical switches, diodes, magnetic dipoles, and transistors are 

two state devices. 

9.6 Terminal Questions 

1. Find equivalent Boolean expression for the following: 

(i)    11 yyyyx   

(ii)       yzzyxxz  11
 

(iii)          111 zxzyzyzx                                                                                                                       

2. Write the Boolean function values for f : A2 → A, where A = {0, 1} with  f 

(x1, x2) =    211 xxx  .   

3. Consider the Boolean polynomial f (x, y, z) = x  (y  z1).  If B = {0, 1}, 

compute the truth table of the function f : B3 → B defined by f. 

4. Consider the Boolean polynomial f(x, y, z) =     yxyyx  11
. 

   If B = {0, 1}, compute the truth table of the function f: B3 → B defined by 

 f. 

5. Rewrite the given Boolean polynomial to obtain the requested format. 

(i) (x  y1  z)  (x  y  z) ;  two variables and one operation. 

(ii) (z  (y  (x  x1))  (y  z1)1 ;  one variable. 

(iii) (y  z)  x1  (w  w1)1  (y  z1) ;  two variables and two 

operations. 
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6. Write the disjunctive and conjunctive normal form for f (x1, x2, x3) = 

[   321 xxx   ]     1321 xxxx  ,  by writing min-terms and max-

terms. 

 

9.7 Answers 

Self Assessment Questions 

1. Take n  = 75. Then 52 | 75 (since 75 = 3.52), we have D75 is not a 

Boolean algebra.  

2. The equivalent Boolean expression is: x1  (x2 x3). 

 

3. i.  x. 

     ii. x  y. 

    iii. x  y. 

4. No, each Boolean algebra must have 2n elements. 

5. The truth table for  x1  x2, x1  x2, x1
ˈ are given below. 

x1 x2 f1 = x1  x2 f2 = x1   x2 f3 = x1
ˈ
 

0 0 0 0 1 

0 1 1 0 1 

1 0 1 0 0 

1 1 1 1 0 
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Unit 10 Formal Languages  

Structure 

10.1 Introduction 

 Objectives 

10.2 Grammars and Languages 

10.3 Classification of Grammars 

10.4 Summary 

10.5 Terminal Questions 

10.6 Answers 

 

10.1 Introduction 

The basic machine instructions of a digital computer are very primitive 

compared with the complex operations that must be performed in various 

disciplines such as engineering, science, management and mathematics. 

Even though a complex procedure can be programmed in machine 

language, it is desirable to use a high level language that contains 

instructions similar to those required in a particular application. The 

specification of a programming language involves a set of symbols and a set 

of correct programs. 

Objectives: 

At the end of the unit, you would be able to 

 construct the language using grammar. 

 construct the grammar, for a given language. 

 

10.2 Grammars and Languages 

A language L can be considered as a subset of the free monoid on an 

alphabet. It is a set of strings or sentences over some finite alphabet. Finite 

languages can be specified by exhaustively enumerating all their sentences. 
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Any device, which specifies a language should be finite. A simple method of 

specification, which satisfies this requirement uses a generative device is 

called as grammar. Precisely, a grammar consists of a finite set of rules or 

productions, which specify the syntax of the language. 

The theory of formal languages exclusively involves the study of the 

language syntax and this theory incepts from the works of well-known 

linguist Noam Chomsky.  

The goal of Chomsky was to define the syntax of natural languages using 

simple and clear mathematical rules in order to precisely characterize the 

structure of language. The primary idea behind this concept was to define a 

formal grammar for describing the natural languages like English so that 

language translation using a computer would become easy. Chomsky 

developed the mathematical model of grammar in 1956. However, rather 

than becoming useful for natural languages, this model turned out to be 

suitable for the grammar of computer languages. 

Before presenting the formal definition of grammar, we review some 

preliminary notations and definitions.  

10.2.1 Definition 

Let S denote a nonempty set of symbols, called an alphabet. We assume 

that S to be finite. The elements of the set are called letters. A word or a 

string on the set S is a finite sequence of the elements. 

10.2.2 Example 

Take S = {a, b}. Then x = abab, y = aaab,  z = aaabb are strings on S. 

10.2.3 Definition 

The length of the string is the number of symbols in the string. 

In the above example, length of x is 4, length of z is 5.  

(Denote respectively are | x | = 4, | z | = 5) 
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Note that a string  is called empty if |  | = 0. In this unit, we denote the 

empty string by “ “. 

10.2.4 Properties of strings 

Let S be the set of symbols, and S* denote the set of all strings (including 

empty string). 

i) Concatenation on S* associative 

 For any x, y, z  S*, x (y z) = (x y) z. 

ii) Identity: The empty string is an identity element for the operation. 

 That is,  x = x  = x  for all x  S* 

iii) Cancellation: For any x, y, z  S*, 

 x y = x z  implies  y = z (left cancellation) 

 y x = y w implies x = w  (right cancellation) 

iv) For x, y  s*, | xy | = | x | + | y |  

10.2.5 Notation 

VT   = Finite non empty set of symbols (alphabet), called terminal  

  symbols. 

  (The strings of terminal symbols are denoted by lower case  

  letters x, y , z, …) 

VN   = Set of non – terminal symbols, which are used to define the  

  syntax (or structure) of the language (A, B, C, …, X, Y, Z, …) 

VN  VT  = Consisting of non terminal and terminal symbols, called  

  vocabulary of the language. (Strings of symbols over the  

  vocabulary  are given by ,  ,  , … ). 

,N TV V    empty set (assumption). 

 If A  1, A  2,  …, A  n are n A-productions, then they 

 can be written as A   12  … n.    
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10.2.6 Definition  

A grammar (phrase structure) is defined by a 4 – tuple G = (VN, VT, S,  ) 

where S is a distinguished element of VN (called the starting symbol),  is a 

finite subset of the relation from 

     
* * *

.T N N T N T NV V V V V to V V    

In general, an element (, ) is written as    (called a production rule or 

a rewriting rule). 

10.2.7 Example  

Let the symbols 

 L : letter 

 D : digit 

 I : identifier 

Write the grammar G =  , , ,N TV V S   

Where    VN  = {I, L, D} 

 VT = {a, b, c, … , x, y, z} 

              S = I 

               = {I   L,  I   IL,  I  ID, L  a, L b, …, L  z,  

 D  0, D  1, …, D  9} 

10.2.8 Definition  

Let G =  , , ,N TV V S   be a grammar. For  ,   (VN  VT)
 * – {empty string},  

  is said to be a direct derivative of   , (denoted as   ) if there are strings 

1 and 2 (including possibly empty strings) such that 

2121 ,and     and     is a production of G. If ,  then 

we say that  directly produces   (or  directly reduces to  ). 
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10.2.9 Example  

Consider the above example, the direct derivatives are as follows: 

Table 10.1 

  Rule used 1 2 

I L I  L   

Ib Lb I  L  b 

Lb Ab L  a  b 

LD L1 D  1 L  

LD aD L  a  D 

10.2.10 Definition 

Let G = (VN, VT, S,  ) be a grammar. The string  produces   (or  is the 

direct derivative of ), written as , 


  if there are strings 0, 1,…, n, 

(n > 0) such that     n1n2110 ...,  (The relation 


 is 

the transitive closure of  ). 

If n = 0, then the reflective transitive closure of  as 

*

.or     


     

10.2.11 Definition 

A sentential form is any derivative of the unique non terminal symbol S. 

The language L generated by a grammar G is the set of all sentential forms 

whose symbols are terminal. 

That is,  
*

*

TL G S and V  
 

   
 

 

This means that, the language is a subset of all terminal strings over VT. 

10.2.12 Example 

Let G =      , , , , , , , , ,E T F a E     

where    consists of productions 
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E  E + T 

E  T 

T  T * F 

T  F 

F  (E) 

F  a 

where the variables E (expression), T (term), and F (factor) used in 

conjunction with arithmetic expressions. 

We wish to derive the expression a * a + a as follows: Starting with the 

symbol E. 

E  E + T 

  T + T 

  T * F + T 

  F * F + T 

  a * F + T 

  a * a + T 

  a * a + F 

  a * a + a 

10.2.13 Problem 

Generate the language L (G) =  1n n na b c n   by the following grammar 

    , , , , , , ,G S B C a b c S   

where   consists of productions, 

S  asBC 

S  aBC 

CB  BC 

aB  ab 

bB  bb 

bC  bc 

cC  cc 
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Solution:  

We generate the language for n = 2. That is, we derive the string a2b2c2. 

S  aSBC 

  aaBCBC 

  aaBBCC 

  aabBCC 

  aabbCC 

  aabbcC 

  aabbcc 

10.2.14 Example 

Consider the grammar      , , , , ,G S C a b S   

where    is the set of productions : S  aCa 

     C  aCa 

     C  b 

Generate the language:  1n na ba n  . 

Solution:  

Derivation for n = 2. i.e., the string a2ba2 

S   aCa 

 aaCaa 

   aabaa 

10.2.15 Problem 

Generate the language L (G) =  , 1n ma ba n m by the grammar. 

    , , , , , , ,G S A B C a b S   where   is the set of productions. 

 , , , ,S aS S aB B bC C aC C a      

 



Discrete Mathematics Unit 10 

Sikkim Manipal University Page No.: 207 

Solution  

Take n = 2, m = 3.  We generate the string a2ba3 

S  aS 

  aaB 

  aabC 

  aabaC 

  aabaaC 

       aabaaa 

10.2.16 Problem 

If G = ({S}, {0, 1}, : {S  0S1, S }, S), then find L(G), the language 

generated by G. 

Solution: Since S   is a production, S  .  This implies that   L(G). 

Now, for all n  1, we can write the following:  

S  0S1  00S11 …  0nS1n  0n1n. 

Therefore, 0n1n
   L(G).   

In the above derivation, at every step, S  0S1 is applied, except in the last 

step where S   is applied.    

Therefore, {0n1n   n  0}  L(G). 

Now suppose w  L(G).  So we should start the derivation of w with S. 

If we are applying S   first, then we will get w = .  

Otherwise, the first production that we need to apply is S  0S1.   

However, at any stage we can apply S   to obtain the terminating string.  

Therefore, w can be derived in the following form. 

S  0nS1n  0n1n, for some n  1, That is L(G)  {0n1n   n  0}. 

Hence L(G) = {0n1n   n  0}. 
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10.2.17 Problem 

Suppose G = ({S, A, B}, {0, 1}, , S) where  consists of productions: S  

0AB0, A  10AB1, B  A01, 0A  100 and 1B1  0101.  Show that w = 

100110100011010 is in L(G).  

Solution: To prove that the given w  L(G), we need to start with an S-

production and subsequently apply the suitable productions in order to 

derive w.  The following sequences show the derivation of w. 

S  0AB0 

     100B0 

     100A010 

     10010AB1010 

     1001100B1010 

     1001100A011010  

     100110100011010 = w  L(G). 

In this sequence, the strings that can be replaced are underlined.  

10.2.18 Problem 

Suppose G = ({S, A, B}, {a, b}, , S), where  consists of the following 

productions. 

S  abAB, A  aBb, B  abA, bA  bab, aB  aaa.  

Show that w = abaaababaaab  L(G). 

Solution: Here, we can follow the proof by starting with an S-production and 

subsequently applying the suitable productions in order, we can derive w.  

The following sequences show the derivation of w: 

S  abAB 

    abaBbB 

    abaaabB 

    abaaababA 

    abaaababaBb 

    abaaababaaab.  Hence w  L(G).  
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Self Assessment Questions 

1. Suppose G = ({S, A, B}, {a, b}, , S) where  consists of the following 

productions: S  abAB, A  aBb, B  abA,   bab, aB  aaa.  Then 

verify whether or not w = abaaababaaab  L(G).  

2. Consider the string x = well, find all prefixes and suffixes of x.  Also find 

all subwords of x.  

3. Let x = 0100, y = 11.  Find xy and yx. 

4. Given the strings u = a2bab2 and v = bab2, find the strings uv, vu, v2, u.  

Also find their lengths.  

5. Let A = {ab, bc, ca}.  Find whether the following strings  

 (i) abc, (ii) ababab, (iii) abba, (iv) bcabbab  

 belongs to A*.    

 

10.3 Classification of Grammars 

Every language is specified by a particular grammar. The classification of 

languages is based on the classification of the grammar used to specify 

them.  Grammars are classified accordingly to the types of productions.  

10.3.1 Definition 

i) A grammar in which there are no restrictions on its productions is called 

type – 0 grammar or unrestricted grammar   0L T . 

ii) A grammar that contains only productions of the form   where 

   is called type – 1 grammar or context sensitive grammar. 

The language generated by this grammar is called context sensitive 

language   1L T . 
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iii) A grammar that contains only productions of the form  where 

   and NV   is called type – 2 grammar or context free 

grammar. The language generated by this grammar is called context 

free language   2L T . 

iv) A grammar that contains only productions of the form  , where 

  , NV  and  has the form a, B or a, where a VT, B  VN is 

called type -3 grammar or regular grammar. The language generated 

by this grammar is called a regular language   3L T . 

v) A grammar G(VN, VT, S,  ) is called monotonic when every 

production in  is of the form    having   ≤  or S  .  In the 

second situation, S does not appear on the right hand side of any of the 

production of G.    

In other words, in any production, the left hand string is always a single non 

– terminal and right hand string is either a terminal or a terminal followed by 

a non – terminal. 

10.3.2 Theorem 

If G be type 0 grammar, then we can find an equivalent grammar G1 where 

each production is either of the form    or A  a.  Here,  and  are the 

strings variables, A is a variable and a is a terminal.  

Proof: To construct G1, consider a production    in G with  or  having 

the same terminals.  Let, in both  and , a new variable Ca replace each of 

the terminals to produce ’s and ’s.   
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Now, for every   , where  and  have same terminals, we can get a 

corresponding    with productions of the form Ca  a for each terminal 

that appears on  or .  Therefore, the new productions obtained from the 

above constriction are the new productions for G1.  Also, the variables of G 

along with the new variables of the form Ca are the variables of G1.  

Similarly, the terminals and the start symbol of G1 are also same as those of 

G.  Hence, G1 satisfies the required conditions for a grammar and it is 

equivalent to G.  Therefore L(G) = L(G1). 

10.3.3 Note 

(i) The above theorem also holds for grammars of type 1, 2 and 3.  

(ii)        3 2 1 0L T L T L T L T   . 

10.3.4 Theorem 

Every monotonic grammar G is equivalent to type 1 grammar.  

10.3.5 Problem 

Construct a grammar for the language. 

L = {aaaa, aabb, bbaa, bbbb} 

Solution: 

Since L has a finite number of strings, we can list all strings in the language. 

Let VT = {a, b} be the set of terminals. 

       VN = {S}, non terminal (starting symbol) 

Productions: S  aaaa 

 S  aabb 

 S  bbaa 

 S  bbbb 

We simplify the productions as follows. 

Let VN = {S, A} 

: , , .S AA A aa A bb     

Therefore, the Grammar     , , , , ,T NG V a b V S A S     
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10.3.6 Problem 

Construct a grammar for the language. 

  *
, , ' 3L x x a b the number of a s in x is a multiple of   

Solution: 

Let T = {a, b} and N = {S, A, B}, 

S is a starting symbol. 

The set of productions:  

S  bS 

S  b 

S  aA 

A  bA 

A  aB 

B  bB 

B  aS 

B  a 

For instance, 

bbababbab can be generated as follows. 

S  bS  bbS  bbaA  bbabA  bbabaB  bbababbB  bbababbaS     

 bbababbab 

Therefore, the grammar     , , , , , ,T NG V a b V S A B S     

10.3.7 Problem 

Find the highest type number that can be applied to the following 

productions:  

1. S  A0, A  1  2  B0, B  012. 

2. S  ASB  b, A  bA  c  

3. S  bS  bc. 
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Solution: 

1. Here, S  A0, A  B0 and B  012 are of type 2, while A  1 and A  

2 are type 3.  Therefore, the highest type number is 2. 

2. Here, S  ASB is of type 2, while S  b, A  bA and A  c are type 3.  

Therefore, the highest type number is 2. 

3. Here, S  bS is of type 3, while S  ab is of type 2.  Therefore, the 

highest type number is 2. 

Notation: Let L0, Lcs, Lcf and Lr are the family of type 0, context sensitive, 

context free and regular languages respectively.  

10.3.8 Operations on Languages  

In formal languages, there are certain common operations. These 

operations include standard set operations such as intersection, union and 

complementation operations.  There are other operations such as string 

operations that are applied element-wise on the languages.  For example, if 

we consider two languages L1 and L2 over some common alphabets, then 

we can define the following operations. 

Concatenation: It combines the two languages to produce the 

concatenated language denoted by L1L2.  Here, L1L2 consists of all the 

strings of type xy, where x is a string in L1 and y is a string in L2.  

Intersection: It produces the language L1 L2 which consists of all the 

strings that are contained in both the languages L1 and L2.  

Union:  It produces the languages L1  L2 which consists of all the strings 

that are contained in either of the languages L1 and L2.  

Complement: It produces the language L1 from the language L1. Here,   

L1 is known as the complement of the language L1 with respect to an 

alphabet, where L1 consists of all the strings over the alphabets that are 

not in the language L1.  
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These operations are generally used in determining the closure properties of 

the classes of languages.  A class of languages is called closed under some 

operation, when applying the operation to the class of languages always 

produces a language in the same class. 

10.3.9 Theorem 

The languages L0, Lcs, Lcf and Lr are closed under the operations 

concatenation and union.   

10.3.10 Problem 

Construct a grammar for the language. 

 , 1,i jL a b i j i j    

Solution:  

We decompose 
1 2L L L  where 

   1 2

i j i jL a b i j and L a b i j     

Grammar for L1: Set of production for L1 

A  aA 

A  aB 

B  aBb 

B  ab, 

where VT = {a, b} , VN = {A, B} 

A is a starting symbol. 

Grammar for L2: 

VT = {a, b}, VN = {C, D}, C is starting symbol. 

Productions: C  Cb 

 C  Db 

 D  aDb 

 D  ab 
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Now by adding the two sets of productions, S  A, S  C with S as the 

starting symbol, we get the grammar – 

    , , , , , , ,T NG V a b V S A B C S     

where  : S  A, S  C, A  aA, A   aB, B  aBb, B  ab, C  Cb,  

C   Bb. 

10.3.11 Problem 

Obtain a grammar to generate the language  

L = {0i1j  i  j, i  0 and j  0}.  

Solution: It is clear from the statement that if a string has n number of 0s as 

the prefix, this prefixed string should not be followed by n number of 1s, that 

is, we should not have equal number of 0’s and 1s. At the same time 0s 

should precede 1s. The grammar for this can be written as:  

G = (VN, VT, , S) where  

VN = {S, A, B, C} 

VT = {0, 1} 

Productions  

:              S  0S1 (generates 0i1j recursively)  

                  S  A     (to generate more 0s than 1s) 

                  S  B     (to generate more 1s than 0s) 

                  A  0A 0 (at least one 0 is generated) 

                  B  1B 1 (at least one 1 is generated); and  

S is the starting symbol. 

10.3.12 Problem 

Obtain a grammar to generate the language L = {x / x  mod 3 = 0} on the 

set VT = {a}.  

Solution:  The language accepted by the grammar can also be written as  

L = {, aaa, aaaaaa, aaaaaaaaa, …}. 
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It is clear from this definition that any string generated should have the 

length multiple of 3 which can be easily done by the production rule: 

S  aaaS  . 

Therefore, the final grammar is: 

 G = (VT, VN, , S), where 

VT = {S} 

VT = {a}, and the set of productions 

: S  aaaS  ,  

S is the starting symbol.  

Self assessment Questions 

6. Find the language for the grammar. 

     0,1 , , ,T NG V V S S     

 where the set of productions 

 : 11 , 0.S S S    

7. Find the language L (G), generated by the grammar. 

      , , , , , ,T NG V x y z V S A S     

  where : , , , .S xS S yA A yA A Z      

8. Find the language L (G), generated by the grammar 

       , , , ,T NG V a b V S S    where 

   : , , .S aaS S a S b     

 

10.4 Summary 

In this unit, we study the formal languages and develop mathematical 

expressions, phrase structure grammar, a simple device for the construction 

of useful formal languages.  Some types of grammars depending on their 

productions were discussed. These are useful for generating algorithms. 
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10.5 Terminal Questions 

1. Construct the grammar which generates the following language and also 

specify their types. 

i)  1 , 3n mL a b n m    

ii)  1n nL a ba n   

iii)  1 , 1n mL a ba n m    

 

10.6 Answers 

Self Assessment Questions  

1. Yes, w  L(G).  

2. , w, we, wel, well;  

 , l, ll, ell, well; 

 , w, e, l, we, el, ll, wel, ell, well.  

3. xy = 010011, yx = 110100. 

4. uv = a2bab4ab2,  uv  = 11 

  vu = bab2a2bab3,  vu  = 11; 

 v2 = bab3ab2,  v2  = 8; 

  u = a2bab2,   u  = 6 

5. No, Yes, No, No. 

6.  ( ) 0, 110 ,11110, 1111110,L G        

7.  ( ) 0, 1n mL G x y z n m    

8.    2 1 2( ) 0 0n nL G a n a b n     

Terminal Questions 

i)     , , , , ,T NG V a b V S B S     

 Where  is : , , , .S aS S bbB B bB B b     

 It is a regular language. 
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ii)     , , , ,T NG V a b V S S     

  Where  is: , .S aSa S b   

  It is a context – free – language. 

iii)     , , , , , ,T NG V a b V S A S    where 

  : , , , , , .S aAb S bAa A bAa A aAb A ab A ba        

iv) It is a context – free – language). 
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Unit 11 Finite Automata 

Structure  

11.1 Introduction 

 Objectives  

11.2 Basic Terms 

11.3 Deterministic Finite Automata (DFA) 

11.4 Transition System (Transition graph) 

11.5 Language Accepted by a DFA 

11.6 Summary 

11.7 Terminal Questions 

11.8 Answers 

 

11.1 Introduction  

A study of finite automaton is their applicability to the design of several 

common types of computer algorithms and programs. For example, the 

lexical analysis phase of a compiler (in which program units such as „begin‟ 

and „+‟ are identified) is often based on the simulation of a finite automaton. 

Also, the problem of finding an occurrence of a string within another, for 

example, whether any of the strings air, water, earth, and fire occur in the 

text of Elements of the Theory of Computation, can also be solved efficiently 

by methods originating from the theory of finite automata. 

 

Figure 11.1 
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Let us now describe the operation of a finite automaton in more detail. 

Strings are fed into the device by means of an input tape, which is divided 

into squares, with one symbol inscribed in each tape square (see figure 11.1). 

The main part of the machine itself is a “black box” with innards that can be, 

at any specified moment, in one of a finite number of distinct internal states. 

This black box - called the finite control - can sense what symbol is written 

at any position on the input tape by means of a movable reading bead. 

Initially, the reading head is placed at the leftmost square of the tape and 

the finite control is set in a designated initial state.  

At regular intervals the automaton reads one symbol from the input tape and 

then enters a new state that depends only on the current state and the 

symbol just read. This is why we shall call this device a deterministic finite 

automaton. After reading an input symbol, the reading head moves one 

square to the right on the input tape so that on the next move it will read the 

symbol in the next tape square. This process is repeated again and again; a 

symbol is read, the reading head moves to the right, and the state of the 

finite control changes. Eventually the reading head reaches the end of the 

input string. The automaton then indicates its approval or disapproval of 

what it has read by the state it is in at the end: if it winds up in one of a set of 

final states the input string is considered to be accepted. The language 

accepted by the machine is the set of strings it accepts. 

 

Objectives:  

At the end of the unit, you would be able to 

 explain  DFA.          

 draw transition diagram. 

 find the language accepted by a DFA.  

 apply the techniques to various finite automata problems.   

 know and explain applications of DFA. 
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11.2 Basic Terms 

Input:  The various inputs i1, i2, …, ip applied at the input side of the model 

are the elements of an input set, , also called the input alphabet. 

Output: The various outputs o1, o2, …, oq generated at the output side of 

the model are the elements of an output set O, also called  the output 

alphabet. 

States: The entire automaton system, at any given instant of time, is in any 

one of the states q1, q2, …, qn. (These are labeled with circles) 

State relation: State relation helps determine the next state that the 

automaton system is going to attain.  State relation takes into consideration 

the present input and the present state of the system in determining its next 

state.  

Output relation: It helps to determine the next output of the automaton 

system.  The output relation may take into consideration only the current 

input or both the current input and the current state for determining the next 

output.  

11.2.1 Definition 

An automaton system in which the output depends only on the present input 

is called a Moore machine.  Alternatively, an automaton system in which 

the output depends both on the present input and the present state is called 

Mealy machine.   

Self Assessment Questions  

1. The symbol  is used for _______ 

2. The symbol O is used for ________ 

3. In an automaton system, the states are represented by _________ 

4. State relation helps to determine _________  
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5. An automaton system in which the output depends only on the present 

input is called a ________  

6. An automaton system in which the output depends both on the present 

input and the present state is called ________  

 

11.3 Deterministic Finite Automata (DFA) 

11.3.1 Definition 

A DFA is 5-tuple or quintuple M = (Q, , , q0, F) where, 

Q is non-empty, finite set of states. 

 is non-empty, finite set of input alphabets. 

 is transition function, which is a mapping from Q   to Q. For this 

transition function the parameters to be passed are state and input symbol. 

Based on the current state and input symbol, the machine may enter into 

another state. 

q0  Q is the start state. 

F  Q is set of accepting or final states. 

11.3.2 Note 

For each input symbol a, from a given state there is exactly one transition 

(there can be no transitions from a state also) and we are sure (or can 

determine) to which state the machine enters. So, the machine is called 

Deterministic machine. Since it has finite number of states the machine is 

called Deterministic finite machine (automaton). 

11.3.3 Illustration 

Let us take the pictorial representation of DFA shown in figure 11.2 and 

understand the various components of DFA. 
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Figure 11.2 

It is clear from this diagram that, the DFA is represented using circles, 

arrows and arcs labeled with some digits, concentric circles etc. The circles 

are nothing but the states of DFA. In the DFA shown in the figure, there are 

three states viz., q0, q1 and q2. An arrow enters into state q0 and is not 

originating from any state and so it is quite different from other states and is 

called the start state or initial state. The state q2 has two concentric circles 

and is also a special state called the final state or accepting state. In this 

DFA, there is, only one final state. Based on the language accepted by DFA, 

there can also be more than one final state. 

The states other than start state and final states are called intermediate 

states. Always the machine will initially be in the start state. It is clear from 

the figure that, the machine in state q0, after accepting the symbol 0, stays in 

state q0 and after accepting the symbol 1, the machine enters into state q1. 

Whenever the machine enters from one state to another state, we say that 

there is a transition from one state to another state. Here we can say that 

there is a transition from state q0 to q1 on input symbol 1. 

In state q1, on input symbol is 0, the machine will stay in q1 and on symbol 1, 

there is a transition to state q2. In state q2, on input symbol 0 or 1, the 

machine stays in state q2 only. This DFA has three states q0, q1 and q2 and 

can be represented as 

Q = {q0, q1, q2}, the possible input symbols set  = {0, 1}, which is set of 

input symbols (alphabets) for the machine.  

q0 
q1 q2 

Start 
state 

Final 
state 

0 
0 0, 1 

1 1 
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There will be a transition from one state to another based on the input 

alphabets. If there is a transition from vi, to vj on an input symbol a, it can be 

represented as (vi, a) = vj. 

The transitions from each state of the machine shown in figure 11.2 based 

on the input alphabets {0, 1} are shown in table.  

Table 11.1 

State input Output Transition Representation 

q0 0 q0 (q0, 0) = q0 

q0 1 q1 (q0, 1) = q1 

q1 0 q1 (q1, 0) = q1 

q1 1 q2 (q1, 1) = q2 

q2 0 q2 (q2, 0) = q2 

q2 1 q2 (q2, 1) = q2 

 

Self Assessment Questions  

6. Consider the example 11.3.3. 

  Write the states, input alphabet, final states, starting state.  

 

11.4 Transition System (Transition graph)  

A finite directed labeled graph in which each node or vertex of the graph 

represents a state and the directed edges from one node to another 

represent transition of a state.  All the edges of the transition graph are 

labeled as input/output.  For example, an edge labeled 1/0 specifies that for 

a certain initial state if the input is 1, then the output is 0.   

Consider the following diagram: 

In the transition graph as shown in the figure,  

 The initial state, q0, of the system is represented by a circle with an 

arrow pointing towards it. 

 The final state, q1, is represented by two concentric circles. 
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 The directed edges from the initial state to the final state are labeled as 

input/output. 

11.4.1 Example 

The graph represents the DFA,  

 

Figure 11.3 

M = (Q = {q0, q1, q2},  = {0, 1}, , q0 = initial state, F = {q1}), where  is given 

by 

(q0, 0) = q0, 

(q0, 1) = q1, 

(q1, 0) = q0, 

(q1, 1) = q2, 

(q0, 0) = q2, 

(q2, 1) = q1. 

Representation of DFA using Transition table  

In this method, the DFA is represented in the tabular form.  This table is 

called transitional table. There is one row for each state, and one column for 

each input.  Since, in the transition diagram shown in the fig., there are three 

states, there are three rows for each state.  The input symbols are only 0 

and 1 so, there are two columns for the input symbols.  The transitional 

table for the diagram is given below.  

 



Discrete Mathematics Unit 11 

Sikkim Manipal University Page No.: 226 

  

States 0                   1  

 q0 

q1 

 

 

q0                 q1 

q1                 q2 

q2                         q1 

Table 11.2 

 Self Assessment Questions  

7. Construct the state table for the following DFA. 

 

Figure 11.4 

 

11.5 Language Accepted by a DFA 

Consider the transition diagram or DFA shown in the figure. The start state is 

q0 and the final state is q2. To start with, the machine will be in start state q0. 

 

Figure 11.5 

 

q0 
q1 q2 

Start 
state 

Final 
state 

0 
0 

0, 1 

1 
1 

q0 
q1 q2 

Start 
state 

Final 
state 

0 
0 

0, 1 

1 1 

  q2 
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Verification of acceptance of the string 1011 

Let us assume that the string 1011 is the input. On first input symbol 1, the 

machine enters into state q1. In state q1, on input symbol 0, the machine 

stays in state q only. In state q1, on input symbol 1, the machine enters into 

state q2. In state q2, on the input symbol 1, the machine stays in state q2. 

Now we encounter end of the input and note that we are in the accepting 

state q2. The moves is made by the DFA for the string 1011.  Therefore, 

after scanning the input string 1011, the machine finally stays in state q2.  

Verification of non-acceptance of the string 1011 

Take the string 0100: The moves made by the machine for the string 0100 

are clear from the following figure.  Note that after scanning the string 0100 

the machine stays in state q1 which is not a final state. Therefore, the string 

0100 is rejected by the machine.  

11.5.1 Definition 

Let M = (Q, , , q0, F) be a DFA  where – 

Q is non-empty, finite set of states. 

 is a non-empty, finite set of input alphabets. 

 is a transition function, which is a mapping from Q   to Q. For this 

transition function the parameters to be passed are state and input symbol. 

Based on the current state and input symbol, the machine may enter into 

another state. 

q0  Q is the start (or initial) state. 

F  Q is set of accepting or final states. 

The string (also called language) w accepted by a DFA can be defined as 

follows. 

L(M) = {w  w  * and 


 (q0, w)  F}.   

Non-acceptance means that after the string is processed, the DFA will not 
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be in the final state and so the string is rejected.  The non-acceptance of the 

string w by a DFA can be defined in notation as:  

)(ML  = {w  w  * and 


 (q0, w)  F}, where


 : Q  *  Q, is an 

extended transition function. The second argument of 


  is a string, rather 

than a single symbol, and its value gives the state the automaton will be in, 

after reading that string.  

(For example, in the above figure 11.5 (q0, 1) = q1 and  (q1, 1) = q2.  So, 



 (q0, 11) = q2). 

11.5.2 Properties  

1. (q, ) = 


 (q, ) = q 

2. (q, wa) = (


 (q, w), a) 

3. (q, aw) = 


 ((q, a), w), where q  Q, a  , w  *.   

11.5.3 Example 

For the DFA shown in fig. given below, what is 


 (q0, 101)?  

 

Figure 11.6 

Solution:  

Property 1: This means that when the current state of the machine is q and 

when there is no input ( means no input), the machine will not move to any 

new state, instead, it stays in the same state q.  

 

q0 
q1 q2 

Start 
state 

Final 
state 

0 

0 
0, 1 

1 1 
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Property 2: Consider 


 (q0, 101) =  (


 (q0, 10), 1), here w = 10 and a = 1.  

Now 


 (q0, 10) =  (


 (q0, ), 1) 

                         = (q0, 1) 

                         = q1. 

Therefore, 


 (q0, 101) =  (


 (q0, 10), 1) =  (q1, 1) = q2. 

11.5.4 Example 

Obtain a DFA to accept strings of as and bs starting with the string ab. 

Solution: It is clear that the string should start with ab and so, the minimum 

string that can be accepted by the machine is ab. 

To accept the string ab, we need three states and the machine can be 

written as – 

 

 

 

Figure 11.7 

where q2 is the final or accepting state. In state q0, if the input symbol is b, 

the machine should reject b (note that the string should start with a).  So, in 

state q0, on input b, we enter into the rejecting state q3. The machine for this 

can be of the form – 

 

 

 

 

 

 

Figure 11.8 

q0 q1 q2 

Start 
state 

Final 
state 

 
 

a b 

q3 

b 

q0 q1 q2 

Start 
state 

Final 
state 

 

a b 
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The machine will be in state q1, if the first input symbol is a. If this a is 

followed by another a, the string aa should be rejected by the machine. So, 

in state q1, if the input symbol is a, we reject it and enter into q3 which is the 

rejecting state. The machine for this can be of the form  – 

 

 

 

 

 

 

 

Figure 11.9 

 

Whenever the string is not starting with ab, the machine will be in state q3 

which is the rejecting state.  So, in state q3, if the input string consists of as 

and bs of any length, the entire string can be rejected and can stay in state 

q3 only.   

The resulting machine can be of the form – 

 

Figure 11.10 

 

q0 q1 q2 

Start 
state 

Final 
state  

 

a b 

q3 

b 
a 

q0 q1 q2 

Start 
state 

Final 
state 

 
 

a b 

q3 

b 
a 

a, b 
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The machine will be in state q2, if the input string starts with ab.  After the 

string ab, the string containing any combination of as and bs, can be 

accepted and so remain in state q2 only.  The complete machine to accept 

the strings of as and bs starting with the string ab is shown in figure 11.10.   

The state q3 is called trap state or rejecting state. 

 

Figure 11.11 

 

In the set notation, the language accepted by DFA can be represented as  

L = {ab(a + b)n  n  0} 

Or  

L = {ab(a + b)*} 

Therefore, the DFA which accepts strings of as and bs starting with the 

string ab is given by M = (Q, , , q0, F), where  

Q = {q0, q1, q2, q3},  = {a, b}, q0: initial state, F = {q2}, and the transition 

function  is defined as  –  

 

 

 

q0 q1 q2 

Start 
state 

Final 
state 

 
 

a b 

q3 

b 
a 

a, b 

a, b 
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Table 11.3 

    

States a                   b  

 q0 

    q1 

 

       q3  

q1                 q3 

q3                 q2 

q2                         q2 

q3                         q3 

 

 To accept the string abab: The string is accepted by the machine.   



 (q0,  abab) =  (


 (q0, aba), b) 

                     =  ( (


 (q0, ab), a), b) 

                     =  ( ( ( (q0, a), b), a), b) 

                     =  ( ( (q1,  b), a), b)  

                     =  ( (q2, a), b)  

                     =  (q2, b)  

                     = q2  F.   

To reject the string aabb:  



 (q0,  aabb) =  (


 (q0, aab), b) 

                     =  ( (


 (q0, aa), b), b) 

                     =  ( ( ( (q0, a), a, b), b) 

                     =  ( ( (q1,  a), b), b)  

                     =  ( (q3, b), b)  

                     =  (q3, b)  

                     = q3  F.   

Therefore, the string aabb is not accepted by the machine.  

 

 q2 
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11.5.5 Note 

Sometimes we ignore the extended notion 


  and we use only  (assuming 

that the reader is well-aware of  it).    

11.5.6 Example 

Consider a finite automaton that will accept the set of natural numbers, 

which are divisible by 3, 

 FqQM ,,,, 0  , where  = {0, 1, 2, … , 9}, Q = {q0, q1, q2} 

F = {q0}, q0 is the starting state. 

IIxQ : defined by 

 

 

 

 

 

 

 

     8,5,2c,7,4,1b,9,6,3,0a  . 

Consider the string 142. 

    2,14,q142,q 00    

           =    2,4,1,q0  

            2,4,q1  

           2,q2  

         Fq1   

Therefore,  the string 142 is not accepted by M.  

Consider the string 150. 

 

  a b c 

q
0 

q
0 

q
1 

q
2 

q
1 

q
1 

q
2 

q
0 

q
2 

q
2 

q
0 

q
1 
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Now       0,5,1,q150,q 00    

        0,5,q1  

       0,q0  

      Fq0   

Therefore, 150 is accepted by M. 

11.5.7 Example 

Obtain a DFA to accept even number of as, and odd number of as. 

Solution: Observe the following transition diagrams. 

Consider the string aa:  (q0, aa) =  ((q0, a), a) =  (q1, a) = q0, which is a 

final state (acceptable state). 

 

Figure 11.12 

 

Consider the string aaa:  (q0, aaa) =  ( (q0, aa), a) =  ( ( (q0, a), a), a) = 

 ( (q1, a), a) =  (q0, a) = q1, which is an acceptable state. 

 

Figure 11.13 

q1 

 
 

q0 

a 

q1 

 
 

q0 

a 

a 

a 
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11.5.8 Problem 

Obtain DFA to accept strings of as and bs having exactly one a, at least one 

a, not more than three as.  

Solution:  

To accept exactly one a:    

To accept exactly one a, we need two states q0 and q1 and make q1 as the 

final state.  The machine to accept one a is shown below,  

                                 

 

 

 

Figure 11.14 

In q0, on input symbol b, remain q0 only so that any number of b‟s can end 

with one a.  The machine for this can be of the form,  

                                                                                                                            

 

 

 

 

Figure 11.15 

In q1, on input symbol b, remain q1 and machine can take the form,  

 

Figure 11.16 

q0 q1 

 
 

 

a 

b b 

q0 q1 

 
 

 

a 

b 

q0 q1 

 
 

 

a 
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But, in state q1, if the input symbol is a, the string has to be rejected as the 

machine can have any number of bs but exactly one a.  So, the string has to 

be rejected and we enter into a trap state q2. Once the machine enters into 

trap state, there is no way to come out of the state and the string is rejected 

by the machine.  The complete machine is shown in the figure 11.7:  

 

Figure 11.17 

In the set notation, the language accepted by DFA can be represented as  

L = {bmabn  m, n  0}. 

The machine M = (Q, , , q0, F), where 

Q = {q0, q1, q2},  = {a, b}, q0: initial state, F = {q1}, and the transition function 

 is defined as:  

Table 11.4 

    

States a                   b  

  q0 

 

      q2 

 

q1                 q0 

q2                 q1 

q2                         q2 

The machine to accept at least one a: The minimum string that can be 

accepted by the machine is a.  For this, we need two states q0 and q1 where 

q1 is the final state. The machine for this is shown below: 

 

q0 q1 

 
 

 

a 

b b 

q2 

a, b 

 q1 
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Figure 11.18 

 

In state q0, if the input symbol is b, remain in q0. Once the final state q1is 

reached, whether the input symbol is a or b, the entire string has to be 

accepted.  The machine to accept at least one a is shown in fig:. 

 

Figure 11.19 

 

In set notation, the language accepted DFA can be represented as,  

L = {bma(a + b)n  m, n  0}.   

The machine M = (Q, , , q0, F), where 

Q = {q0, q1},  = {a, b}, q0: initial state, F = {q1}, and the transition function  

is defined as  

Table 11.5 

    

States a                   b  

 q0 

 

 

q1                 q0 

q1                 q1 

 

 

The machine to accept not more than three as: The machine should accept 

q0 q1 

 
 

 

a 

b a, b 

q1 

a 

q1 q0 
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not more than three as means,  

It can accept zero as  

It can accept one a 

It can accept two as 

It can accept 3 as 

But, it cannot accept more than three as. 

In this machine maximum of three as can be accepted (that is, the machine 

can accept zero as, one a, two as).  So, we need maximum four states  

q0, q1, q2 and q3 where all these states are final states and q0 is the start 

state. 

 

 

 

Figure 11.20 

 

In state q3, if the input symbol is a, the string has to be rejected and we 

enter into a trap state q4.  Once this trap state is reached, whether the input 

symbol is a or b, the entire string has to be rejected and remain in state q4.  

Now, the machine can take the form as shown below, 

 

Figure 11.21 

In state q0, q1, q2 and q3, if the input symbol is b, stay in their respective 

states and the final transition diagram is shown below. 

q1 

 
 

 

a 
a 

a 

q0 

q2 
q3 q4 

a a 

a, b 

q

1 

 
 

 

a a a 

q0 

q2 q3 
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Figure 11.22 

 

In set notation, the language accepted DFA can be represented as,  

L = {biabjabkabl  i, j, k, l  0} 

The DFA is M = (Q, , , q0, F) where Q = {q0, q1, q2, q3, q4},  = {a, b}, q0 is 

the start state, F = {q0, q1, q2, q3}, and  is the transition function. 

Table 11.6 

    

States a                   b 

  

 

 

 

 

 

 

 

 

q4 

q1                 q0 

 

q2                 q1 

 

q3                         q2 

 

q4                           q3 

 

q4                            q4 

 

11.5.9 Problem 

Obtain a DFA to accept the language L = {w / w  mod 5  0} on  = {a, b}. 

q1 

 

 

a 
a 

a 

q0 

q2 
q3 q4 

a a 

a, 
b 

b b 
b b 

q0 

q1 

 

q2 

 

q3 
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Solution: The number of symbols in a string consisting of as and bs should 

not have multiples of 5.  The machine to accept the corresponding language 

is show below: 

 

 

Figure 11.23 

 

Self Assessment Questions  

8. Draw a DFA to accept strings of as and bs with even number of as and 

even number of bs.  Also find the language accepted by DFA.  

 

 

Figure 11.24 

11.6 Summary  

The concept of finite automata is used in wide applications.  Large natural 

vocabularies can be described using finite automaton, which includes the 

q1 

 
 

 

a 
a a 

q0 

q2 q3 

a, b 
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applications such as spell checkers and advisers, multi-language 

dictionaries, to indent and documents, in calculators to evaluate complex 

expressions based on the priority of an operator etc.  In this unit, we have 

given a comprehensive idea about the DFA and a graphical representation 

of DFA.  Further, we discussed the language accepted by DFA with certain 

examples.  

 

11.7 Terminal Questions  

1. What is DFA ? Explain with example.  

2. When do we say that a language is accepted by the machine? Illustrate 

with example.  

3. Obtain a DFA to accept strings of 0s and 1s starting with at least two 0s 

and ending with at least two 1s. Also find the language accepted by this.  

4. Obtain a DFA to accept strings of as and bs with at most two 

consecutive bs.  

 

Figure 11.25 

11.8 Answers 

Self Assessment Questions  

1. Input alphabet. 

2. Output alphabet. 

3. These are labeled with circles. 

4. The next state that the automaton system is going to attain.   
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5. Moore machine; Mealy machine.   

6. States: {q0, q1, q2}, Input alphabet: {0, 1}, final state: {q2}, starting state 

{q0}. 

7.   

  

State

s 

0                   1  

 q0 

    q1 

 

 

q0                 q1 

q1                 q2 

q2                         q2 

 

8. The language accepted by DFA is – 

 L = {w  w  (a + b)* and total number of strings in both a and b are 

 even}. 

Terminal Questions 

3.    

 

The language accepted by DFA can be represented as 

L = {w  w  00(0+1)*11} 

q2 
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Unit 12 Basic Graph Theory    

Structure 

12.1 Introduction 

 Objectives 

12.2 Definitions and Examples 

12.3 Adjacency and Degree  

12.4 Subgraphs 

12.5 Trees  

12.6 Properties of Trees  

12.7 Rooted Trees and Applications 

12.8 Summary 

12.9 Terminal Questions 

12.10 Answers  

 

12.1 Introduction 

Graph theory was introduced in 1736 with Euler‟s paper in which he solved 

the Kongsberg Bridges problem. In 1847, Kirchhoff (1824 - 87) developed 

the theory of trees to applications in electrical networks. Cayley discovered 

trees while he was trying to enumerate the isomers of (Cn H2n+2). The last 

three decades have witnessed more interest in Graph Theory, particularly 

among applied mathematicians and engineers. Graph Theory has a 

surprising number of applications in many developing areas. The Graph 

Theory is also intimately related to many branches of mathematics including 

Group Theory, Matrix Theory, Automata and Combinatorics. One of the 

features of Graph Theory is that it depends very little on the other branches 

of mathematics. Graph Theory serves as a mathematical model for any 

system involving a binary relation. One of the attractive features of Graph 

Theory is its inherent pictorial character. The development of high-speed 

computers is also one of the reasons for the recent growth of interest in 

Graph Theory. 
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Objectives: 

At the end of the unit, you would be able to 

 appreciate the relevance of Graph Theory in real life situation 

 explain different fundamental definitions 

 observe the difference between different concepts defined with the examples  

 explain some techniques used in proving simple theorems 

 find the sub-graphs of a given graph. 

 study connected graphs without any circuits (called trees). 

 explain some properties of trees. 

 

12.2 Definitions and Examples 

12.2.1 Definition  

(i) A linear graph (or simply a graph). G = (V, E) consists of a nonempty 

set of objects, V = {v1, v2, …}  called vertices and another set, E = {e1, 

e2, …}  of elements called edges such that each edge „ek‟ is identified 

with an unordered pair  {vi, vj} of vertices. The vertices vi, vj associated 

with edge ek are called the end vertices of ek. 

(ii) An edge associated with a vertex pair {vi, vi} is called a loop (or) selfloop. 

(iii) If there are more than one edge associated with a given pair of vertices, 

then these edges are called parallel edges (or) multiple edges. 

12.2.2 Example 

Consider the graph given here, 

 

 

 

 

 

 

 

 

e6 

e7 

e1 

e2 
e4 

v3 v4 

v5 
e5 

v2 

v1 

Figure 12.1 
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This is a graph with five vertices and six edges.  Here  G  =  (V, E) where    

V  =  {v1, v2, v3, v4, v5} and  E  =  {e1, e2, e4, e5, e6, e7}.  

The identification of edges with the unordered pairs of vertices is given by  

e1    {v2, v2}, e2    {v2, v4},  e4    {v1, v3}, e5    {v1, v3}, e6    {v3, v4}. 

Here  „e1‟ is a loop and e4, e5 are parallel edges.  

12.2.3 Definition 

A graph that has neither self-loops nor parallel edges is called a simple 

graph.  Graph containing either parallel edges or loops is referred as 

general graph. A graph  „G‟ with a finite number of vertices and a finite 

number of edges is called a finite graph.  A graph „G‟ that is not a finite 

graph is said  to be an infinite graph. 

Observation: The two graphs given below are one and the same. 

 

 

 

 

 

 

 

Figure 12.2 
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12.2.4 Example 

Consider the following three graphs; 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.3 

It can be observed that the number of vertices, and the number of edges  

are finite.  Hence these three graphs are finite graphs. 

Consider the two graphs  given here. It can be understood that the number 

of vertices of these two graphs is not finite. So we conclude that these two 

figures represent infinite graphs. 

 

 

 

 

 

 

 

Figure 12.4 

u1 

u1 

u2 

u3 

e1 

e2 

e4 

e3 

e5 

u4 

u2 

u3 

e3 

e1 

e5 

e6 

e7 e2 

e7 

u4 

e4 

u1 

e4 

e6 

e6 

e5 

e2 

e3 

u2 u3 

u5 
e1 

u4 

 

Infinite Graphs 
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12.2.5 Example 

The diagrams of fig. 12.5(a) and 12.5 (b) illustrate two non directed graphs. 

The graph G, shown in Fig. 12.5(a) is not simple since there is a loop 

incident on vertex c.  

The graph G1 shown in Fig. (b) is simple since there are no self loops and 

parallel edges. 

The graph G11 in fig. (c) represents a multi-graph since there are three 

edges between the vertices b and c.  

V(G) = {a, b, c, d) and E(G) = {{a, b},{a, c},{b, c},{c, c},{a, d},{c, d}}. 

Therefore, G is of order 4 and size 6.   

Similarly, the graph G1 has order 4 and size 5, and the multi-graph G11 has 

order 4 and size 7. 

Observation: The non-directed graphs may be viewed as symmetric 

directed graphs, in which for every edge (u, v) between two vertices in 

direction there is also an edge (v, u) between the same vertices in the other 

direction.  

 

 

Figure 12.5 

12.2.6 Definition 

If a vertex  v  is an end vertex of some edge e, then  v  and  e  are said to be 

incident with (or on, or to) each other. 
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12.2.7 Example 

Consider the graph given in Fig. 12.6 Here the edges e2, e6, e7 are  incident 

with the vertex  u4. 

 

 

 

 

 

 

Figure 12.6 

 

12.3 Adjacency and Degree 

 12.3.1 Definition 

(i) Two non-parallel edges are said to be adjacent if they are incident on 

a common vertex.   

(ii) Two vertices are said to be adjacent if they are the end vertices of the 

same edge. 

12.3.2 Example 

Consider the graph given. Here the vertices u4, u5 are adjacent. The vertices 

u1 and u4 are not adjacent.  The edges e2 and e3 are adjacent. 

12.3.3 Definition 

The number of edges incident on a vertex v is called the degree (or 

valency) of v. The degree of a vertex v is denoted by d(v).  It is to be noted 

that a self-loop contributes two to the degree of the vertex. 

12.3.4 Example 

Consider the graph given in Fig. 12.7. Here d(u1) = 2;  d(u2) = 1;  d(u3) = 3;  

d(u4) = 2;  d(u5) = 2;  d(u6) = 2;  d(u7) = 1;  d(u8) = 3;  d(u9) = 2;  d(u10) = 2. 

 

e6 

e7 

e1 

e2 

e3 

e4 

u3 u4 

u5 
e5 

u2 

u1 



Discrete Mathematics Unit 12 

Sikkim Manipal University Page No.: 249 

 

 

 

 

 

 

 

 

Figure 12.7 

 

12.3.5 Example 

Consider the graph given in Fig. 12.8 

 

 

 

 

 

 

 

Figure 12.8 

Here  d(u1)  =  2,  d(u3)  =  d(u4)  =  3;  d(u2)  =  3;  d(u5)  = 1 

So,  d(u1)  +  d(u2)  +  d(u3)  +  d(u4) + d(u5)   =  2 + 3 + 3 + 3 + 1  =  12  =  2(6)  =  2e, where e 

denotes the number of edges.  Hence we can observe that  

d(u1) + d(u2) + d(u3)  + d(u4) + d(u5) = 2e (that is, the sum of the degrees of 

all vertices is equal to twice the number of edges). 

12.3.6 Theorem 

The sum of the degrees of the vertices of a graph G is twice the number of 

edges.  That is, 
Viv

i )v(d  = 2e. (Here e is the number of edges). 

u10 

u1 

u2 

u3 

u4 

u5 

u6 

u7 

u8 

u9 

e1 u1 

e5 

e4 

u3 e6 

u5 

u2 

e2 

u4 

e7 
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Proof: (The proof is by induction on the number of edges „e‟). 

Case-(i): Suppose    e  =  1. Suppose f is the edge in G with f = uv. 

Then d(v) = 1, d(u) = 1. Therefore,  


Vx

)x(d   = 
 }v,u{\Vx

)x(d  +  d(u)  +  d(v) 

                 =   0 + 1 + 1  

                 =   2  

                 =   2   1  

      = 2    (number of edges). 

Hence the given statement is true for n = 1.  

Now we can assume that the result is true for e = k - 1.   

Take a graph G with k edges. Now consider an edge   „f‟ in G whose end 

points are u and v. Remove f from G. Then we get a new graph G* = G  -  {f}.     

Suppose d*(v) denotes the degree of vertices v in G*. Now for any x  {u, v}, 

we have d(x)  =  d*(x), and  d*(v)  =  d(v) - 1,   d*(u)   =   d(u) - 1. 

Now G* has k - 1 edges. So by induction hypothesis –  


Vv

i

*

i

)v(d    =    2(k - 1). 

Now 2(k - 1)  =  
Viv

i
*

)v(d    =  
 }v,u{iv

i
*

)v(d  + d*(u) + d*(v) 

                                   =  
 }v,u{iv

i )v(d   +  (d(u) - 1)  +  (d(v) - 1) 

                                   =  
 }v,u{iv

i )v(d   +  d(u)  +  d(v) - 2  

                                              =   
Viv

i
*

)v(d  - 2 

  2(k - 1)  +  2   =   
Viv

i
*

)v(d       2k   =   
Viv

i )v(d  



Discrete Mathematics Unit 12 

Sikkim Manipal University Page No.: 251 

Hence by induction we get that “the sum of the degrees of the vertices of the 

graph G is twice the numbers of edges”. 

12.3.7 Theorem 

The number of vertices of odd degrees is always even. 

Proof: We know that the sum of degrees of all the „n‟ vertices (say, vi, 1 i  

n) of a graph G is twice the number of edges (e) of G.  So we have,    




n

1i

i )v(d  =  2e --------- (i) 

If we consider the vertices of odd degree and even degree separately, then – 




n

1i

i )v(d  = 
isevenjv

j )v(d  + 
isoddkv

k )v(d  -------- (ii) 

Since the L.H.S of (ii) is even (from (i) and the first expression on the RHS 

side is even, we have that the second expression on RHS is always even. 

Therefore , 


isoddkv

k )v(d  is an even number --------- (iii) 

In (iii), each d(vk) is odd. The number of terms in the sum must be even to 

make the sum an even number.  Hence the number of vertices of odd 

degree is even. 

12.3.8 Example 

Show that the number of people who dance (at a dance where the dancing 

is done in couples) an odd number of times is even.  

Solution: Suppose the people are vertices. If two people dance together, 

then we can consider it as an edge.  Then the number of times a person v  

danced is  (v).  By Theorem 9.5.9, the number of vertices of odd degree is 

even.  Therefore, the number of people who dance odd number of times is 

even.     
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12.3.9 Definition 

A vertex having no incident edge is called an isolated vertex. In other 

words, a vertex v is said to be an isolated vertex if the degree of v is equal 

to zero.  

12.3.10 Example 

Consider the graph given in Fig. The vertices v4 and v7  are  isolated 

vertices. 

 

 

 

 

 

 

 

Figure 12.9 

12.3.11 Definition 

A vertex of degree one is called a pendent vertex or an end vertex.  Two 

adjacent edges are said to be in series if their common vertex is of degree 

two. 

12.3.12 Example 

In the Example 12.3.10, the vertex „v3‟ is of degree 1, and so it is a pendent 

vertex. The two edges incident on v1 are in series. 

12.3.13 Definition 

The minimum of all the degrees of the vertices of a graph G is denoted by 

(G), and the maximum of all the degrees of the vertices of G is denoted by 

(G).  If (G) = (G) = k, that is, if each vertex of G has degree k, then G is 

said to be k-regular or regular of degree k.  3-regular graphs are called 

cubic graphs.  

v6 

v2 

v7 
v1 v5 

v3 

v4 
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12.3.14 Example: 

(i) Consider the graph G given in Fig (a).  It is easy to observe that the 

degree of every vertex is equal to 3.  Hence the graph G is a regular 

graph of degree 3. 

 

 

 

 

 

 

 

Figure 12.10 

 

(ii) The following graph fig (b) is a regular graph of degree-4. 

 

Figure 12.11 

12.3.15 Definition 

If v1, v2, …, vn are the vertices of G, then the sequence (d1, d2,…, dn) where 

di = degree (vi), is the degree sequence of G. Usually, we order the vertices 

so that the degree sequence is monotone increasing, that is, so that (G) = 

d1 ≤ d2 ≤ … ≤ dn = (G). 
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12.3.16 Example 

The vertex c of the graph G in Example 12.2.5 is degree 5 while the degree 

of c in G1 is 3. The degree sequence of G is (2, 2, 3, 5) while the degree 

sequence of G1 is (2, 2, 3, 3). 

12.3.17 Definition 

A graph G = (V, E) is said to be a null graph  if   E  =  . 

12.3.18 Example 

The graph  G  given in Fig,  contains no edges and hence  G  is a null 

graph.   

 

 

 

 

 

Figure 12.12 

12.3.19 Definition 

In a non-directed graph G a sequence P of zero more edges of the form {v0, 

v1}, {v1, v2},…, {vn-1, vn}, (in this repetition of vertex is allowed) is called a 

path from v0 to vn.  The vertex v0 is called the initial vertex and vn is the 

terminal vertex, and they both are called endpoints of path P.  

We denote this path P as a v0 - vn path.  If v0 = vn then it is called a closed 

path, and if v0  vn then it is called an open path. 

12.3.20 Definition 

A path P may have no edges at all, in which case, the length of P is zero, P 

is called a trivial path, and V(P) = {v0}.  A path P is simple if all edges and 

vertices on the path are distinct except possibly the endpoints.  Two paths in 

a graph are said to be edge-disjoint if they share no common edges; they 

are vertex-disjoint if they share no common vertices. 

v6 v6 
v5 

v2 v3 v4 v1 
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12.3.21 Note 

An open simple path of length n has n + 1 distinct vertices and n distinct 

edges, while a closed simple path of length n has n distinct vertices and n 

distinct edges. The trivial path is taken to be a simple closed path of length 

zero. 

12.3.22 Definition 

A path of length  1 with no repeated edges and whose endpoints are equal 

is called a circuit. A circuit may have repeated vertices other than the 

endpoints; a cycle is a circuit with no other repeated vertices except its 

endpoints.  

Observation  

 A cycle is a simple circuit, and, in particular, a loop is a cycle of length 1.  

 In a graph, a cycle that is not a loop must have length at least 3, but 

there may be cycles of length 2 in a multi-graph. 

12.3.23 Example 

Consider the graphs given in example 12.2.5. 

(i) The path {c, c} is a cycle of length 1; the sequence of edges {a, b},  

{b, c}, {c, a} and {a, d}, {d, c}, {c, a} form cycles of length 3.  

(ii) The path {a, b}, {b, c}, {c, d}, {d, a} is a cycle of length 4.  

(iii) The sequence {a, b}, {b, c}, {c, c}, {c, a} is a circuit of length 4; it is not a 

cycle because the sequence of vertices a-b-c-c-a includes more than 

one repeated vertex. Similarly the sequence of edges {a, b},{b, c}, 

{c, a},{a, d},{d, c},{c, a} forms a closed path of length 6, but this path is 

not a circuit because the edge {c, a} is repeated twice. 

12.3.24 Example 

Consider the following graph:  
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Figure 12.13 

 

Table 12.1 

Path Length Simple 
(yes/no) 

Closed 
(yes/no) 

Circuit 
(yes/no) 

Cycle 
(yes/no) 

a-d-c-e-g-j-d-a 7 no yes no no 

b-c-e-f-g-j-f-b 7 no yes yes no 

a-b-a 2 No Yes No No 

a-d-c-b-a 4 Yes Yes Yes Yes 

i-i 1 Yes Yes Yes Yes 

a 0 Yes Yes No No 

e-f-g-j-f-b 5 No No No No 

d-b-c-d 3 yes yes yes Yes 

 

Observation: A simple path is certainly a path and the converse statement 

need not be true. 

12.3.25 Theorem 

In a graph G, every u-v path contains a simple u-v path. 

Proof: If a path is a closed path, then it indeed contains the trivial path. 

Assume that P is an open u - v path.  

Use induction on the length of path: If P has length one, then P is itself a 

simple path. Induction hypo: Suppose that all open u - v paths of length k, 

where 1 ≤ k ≤ n, contains a simple u-v path. 
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Now suppose that P is the open u-v path {v0, v1}, …, {vn, vn+1} where u = v0 

and v = vn+1. It may be that P has repeated vertices, but if not, then P is a 

simple u - v path. 

If there are repeated vertices in P, let i and j be distinct positive integers 

where i < j and vi = vj.  If the closed path vi-vj is removed from P, an open 

path P1 is obtained having length ≤ n since at least the edge {vi, vi+1} was 

deleted from P.  Therefore, by the inductive hypothesis, P1 contains a simple 

u-v path.  Hence P contains simple u-v path. 

 

Self Assessment Questions 

1. Find the degree of all the vertices of the graph G given in 12.2.7 

(Incidence  and degree) 

2. Can a simple graph exist with 15 vertices each of degree five. 

3. How many vertices does a regular graph of degree 4 with 10 edges 

have ? 

4. Is there a non-simple graph G with degree sequence  

(1, 1, 3, 3, 3, 4, 6, 7) ? 

 

12.4 Subgraphs 

12.4.1 Definition 

A graph  H  is said to  be a sub-graph of a graph  G  if all the vertices and 

all the edges of  H  are in  G,  and each  edge of  H  has the same end 

vertices  in  H  as in  G.  

12.4.2 Example 

The graphs H and K are subgraphs of graph G.   
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Figure 12.14 

Observations:  

 Every graph is a sub graph of itself;    

 A subgraph of a subgraph of  G  is a subgraph of  G;  

 A single vertex in a graph G is a subgraph of  G; and  

 A single edge in G together with its end vertices is a subgroup of G. 

12.4.3 Definition 

Two subgraphs G1 and G2 of a graph G are said to be edge-disjoint if G1 

and G2 do not have any edges in common. The subgraphs that do not have 

vertices in common are said to be vertex disjoint. 

12.4.4 Example 

Observe the two graphs given in Figures A and B below. These two graphs 

are subgraphs of the graph given in the Figure-C. There are no common 

edges in these two subgraphs. Hence these two subgraphs are edge 

disjoint subgraphs. 
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12.4.5 Definition 

If H is a sub-graph of G, then the complement of H in G, denoted by ( )H G , 

is the subgraph G-E(H); that is, the edges of H are deleted from those of G.   

12.4.6 Example 

Consider the graph G, subgraph H of G, and the complement of H in G. 

 

 

 

 

 

 

 

 

 

 

Figure 12.16  
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12.5 Trees  

The concept of a „tree‟ plays a vital role in the theory of graphs. First we 

introduce the definition of „tree‟, study some of its properties and its 

applications.  We also provide equivalent conditions for a tree.  

12.5.1 Definition 

A connected graph without circuits is called a tree. 

12.5.2 Example 

Trees with one, two, three and four vertices are given in the Fig. below: 

 

         

 

 
 

Figure 12.17 

 

12.5.3 Example 

Consider the two trees G1 = (V, E1) and G2 = (V, E2) where 

V = {a, b, c, d, e, f, g, h, i, j}  

E1 = {{a, c}, {b, c}, {c, d}, {c, e}, {e, g}, {f, g}, {g, i}, {h, i}, {i, j}} 

E2 = {(c, a), (c, b), (c, d), (c, f), (f, e), (f, i), (g, d), (h, e), (j, g)} 

 

 
Figure 12.18 
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Neither of these two trees is a directed tree.  

If vertex c is designated as the root of each tree, vertex j is a level 4 in G1 

and at level 3 in G2.   

12.5.4 Example 

A directed tree T is shown in the following fig. Here T = (V, E) where V = {a, 

b, c, d, e, f, g, h} and E = {(a, b), (a, c), (a, d), (b, e), (d, f), (e, g), (e, h)}.  

The root of T is the vertex a and the vertices at level 2 are e and f.  

 

 
Figure 12.19 

12.5.5 Note 

Directed trees are conventionally drawn with the root at the top and all 

edges going from the top of the page toward the bottom so that the direction 

of edges is sometimes not explicitly shown. 

Observations 

 Since a tree is a graph, we have that a tree contains at least one vertex. 

 A tree without any edge is referred to as a null tree. 

 Since we are considering only finite graphs, we have that the trees 

considered are also finite. 

 A tree is always a simple graph.  

 A vertex of degree of 1 is called a pendent vertex.  
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12.5.6 Note 

Let G = (V, E) be a disconnected graph.  We define a relation  ~  on the set 

of vertices as follows: v ~ u  there is a walk from v to u.  

Then this relation ~ is an equivalence relation.   

Let {Vi}i  be the collection of all equivalence classes.  Now   

V = 
i

iV . 

Write Ei = {e  E  / an end point of e is in Vi} for each i.   

Then   (Vi, Ei) is a connected subgraph of G for every  i.    

This connected subgraph (Vi, Ei) of G is called a connected component (or 

component) of G for every i  .   

The collection {(Vi, Ei)}i of subgraphs of G is the collection of all connected 

components of  G. 

Observations: 

 If G is a connected graph, then G is the only connected component of G. 

 A disconnected graph G consists of two or more connected 

components.  

 Connected component of a graph G  is a maximal  connected subgraph 

of  G. 

 A graph is connected if it has exactly one component. 

 Consider the graph given in Fig. 12.20 

 

 

 

 

 
Fig. 12.20 

 

 This graph is a disconnected graph with two components. 
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12.5.7 Formation of Components  

If G is a connected graph, then G contains only one connected component 

and it is equal to G.  

Now suppose that G is a disconnected graph. Consider a vertex   v in G.  If 

each vertex of G is joined by some path to v, then the graph is connected, a 

contradiction.  So there exists at least one vertex, which is not joined by any 

path to v. 

 The vertex v and all the vertices of G that are joined by some paths to v 

together with all the edges incident on them form a component (G1). 

To find another component, take a vertex u (from G) which is not in G1. The 

vertex u and all the vertices of G that are joined by some paths to u  

together with all the edges incident on them form a component (G2). 

Continue this procedure to find the components. Since the graph is a finite 

graph, the procedure will stop at a finite stage. In this way, we can find all 

the connected components of G.  It is clear that, a component itself is a 

graph.   

12.5.8 Definition 

Let G be a connected graph. A cut-set is a subset C of the set of all edges 

of G whose removal from the graph G leaves the graph G disconnected; 

and removal of any proper subset of C does not disconnect the graph G.  

(Equivalently, cut-set can also be defined as a minimal set C of edges in a 

connected graph G whose removal reduces the rank of the graph by one). 

12.5.9 Example 

Observe Graph in Fig-A.  If we remove {a, c, d, f} from the graph, then we 

get the subgraphs given in Fig-B.  

So in the Graph-(A), the subset {a, c, d, f} of edges,  is a    cut-set.    

Also there are many other cut-sets such as   {a, b, g}, {a, b, e, f}, {d, h, f}. 
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Also edge set   {k} is  a cut-set.    

  

 

 

 

 

 

 

 

Figure 12.21 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.22 

 

12.6 Properties of Trees 

12.6.1 Theorem 

T is a tree  there is one and only one path between every pair of vertices.    

Proof: Suppose T is a tree. Then T is a connected graph and contains no 

circuits. 
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Since T is connected, there exists at least one path between every pair of 

vertices in T. 

Suppose that between two vertices a and b of T, there are two distinct 

paths. 

Now, the union of these two paths will contain a circuit in T, a contradiction 

(since T contains no circuits).  

This shows that there exists one and only one path between a given pair of 

vertices in T. 

Converse:  Let G be a graph. 

Assume that there is one and only one path between every pair of vertices 

in G.   

This shows that G is connected.   

If possible suppose that G contains a circuit. 

Then there is at least one pair of vertices a, b such that there are two 

distinct paths between a and b. But this is a contradiction to our assumption.  

So G contains no circuits. Thus G is a tree. 

12.6.2 Theorem 

A tree G with „n‟ vertices has  (n-1) edges. 

Proof:  We prove this theorem by induction on the number vertices n.  

If n = 1, then G contains only one vertex and no edge.  

So the number of edges in G is n -1 = 1 - 1 = 0. 

Suppose the induction hypothesis that the statement is true for all trees with 

less than „n‟ vertices. Now let us consider a tree with  „n‟  vertices. 

Let  „ek‟  be any edge in  T  whose end vertices are  vi  and  vj. 

Since T is a tree, by Theorem 12.3.1, there is no other path between vi and vj.   

So by removing  ek  from T,  we get a disconnected graph.  
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Furthermore, T- ek consists of exactly two components(say  T1  and  T2). 

Since T is a tree, there were no circuits in  T  and  so there were no circuits 

in T1 and T2.    

Therefore, T1 and T2 are also trees.   

It is clear that |V(T1)| + |V(T2)| = |V(T)| where V(T) denotes the set of vertices 

in  T. 

Also |V(T1)| and |V(T2)| are less than  n. 

Therefore, by the induction hypothesis, we have – 

 |E(T1)|  =  |V(T1)| - 1   and    |E(T2)|  =  |V(T2)| - 1. 

Now   |E(T)| - 1  =   |E(T1)| + |E(T2)| =   |V(T1)| - 1 + |V(T2)| - 1 

    |E(T)|  =  |V(T1)|  + |V(T2)| - 1 

            =  |V(T)| - 1   =   n-1. 

This completes the proof. 

12.6.3 Problem 

If T is a tree (with two or more vertices), then there exists at least two 

pendant  (a vertex of degree 1) vertices. 

Solution:  

Let n = the number of vertices in G. Then G has n-1 edges.   Now 

1

deg( ) 2 2( 1) (2 2)
n

i

i

v E n n


     . 

Now if there is only one vertex, say v1 of degree 1, then  

deg(vi)  2 for i = 2, 3, …, n and 

1 2

deg( ) 1 deg( ) 1 2 2 2 1.
n n

i i

i i

v v n n
 

         

But 2n-2  2n-1 or -2  -1, a contradiction. 

Therefore, there are at least two vertices of degree 1. 
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12.6.4 Problem 

If 2 nonadjacent vertices of a tree T are connected by adding an edge, then 

the resulting graph will contain a cycle. 

Proof: If T has n vertices then T has n -1 edges and then if an additional 

edge is added to the edges of T the resulting graph G has n vertices and n 

edges. Hence G cannot be a tree by Problem 12.7.3.  

But, the addition of an edge has not affected the connectivity.  

Hence, G must have a cycle.  

12.6.5 Problem 

Any connected graph with „n‟ vertices and n -1 edges is a tree.                            

Solution: Let „G‟ be a connected graph with n vertices and n - 1 edges.  It is 

enough to show that G contains no circuits.  

If possible, suppose that G contains a circuit.    

Let  „e‟ be an edge in that circuit. 

Since  „e‟ in a circuit, we have that G - e is still connected. 

Now G - e is connected with  „n‟ vertices, and so it should contain at least n -

1 edges, a contradiction (to the fact that G - e contain only  (n-2) edges).  

So G contains no circuits. Therefore, G is a tree. 

12.6.6 Theorem 

If a graph G contains n vertices, n –1 edges and no circuits, then G is a 

connected graph. 

Proof: Let G be a graph with  ‘n’ vertices, n – 1 edges and contains no circuits.  

In a contrary way, suppose that G is disconnected.  

G consists of two or more circuitless components (say,  g1, g2, …, gk).  

Now k  2. Select a vertex vi in  gi,  for  1   i    k.  

Add new edges e1, e2, …, ek-1   where   ei = 1ii vv     to get a new graph  G*.  

It is clear that G* contains no circuits and connected, and so G*  is a tree. 
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Now G* contains n vertices and   (n - 1) + (k - 1)  =  (n + k - 2)    n   edges, 

a contradiction (since a tree contains  (n - 1)  edges).  

This shows that G is connected. 

This completes the proof. 

Self Assessment Questions 

5.  Which of the following graphs are trees? 

 

 

 

 

 

Figure 12.23 

 

6.  Draw all trees with five vertices.  

7. Consider the following graph. 

 

Figure 12.24 

 

 The number of components in this graph is _____ 

12.7 Rooted Trees and Applications 

Rooted trees are extensively used in the computer search methods, binary 

identification problems, and variable length binary codes. 

12.7.1 Definition 

A tree in which one vertex (called the root) is distinguished from all the other 

vertices, is called a rooted tree. In a rooted tree, the root is generally 

marked in a small triangle (or small circle). 

G1 G2 
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12.7.2 Example 

Distinct rooted trees with four vertices, are given in Fig. 12.25 

 

 

 

 

 

 

Figure 12.25 

 

Generally, the term „tree‟ means trees without any root. However they are 

sometimes called free trees (or) non-rooted trees. A variety of rooted trees 

(called the Binary rooted trees) is of particular interest.  

12.7.3 Definition  

A tree in which there is exactly one vertex of degree 2, and all other 

remaining vertices are of degree one or three, is called a binary tree. 

 

 

 

    

 

 

 

 

 

 

 

 

 

Fig. 12.26 
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i) The above Fig. represents a binary tree (since the only vertex   „v1‟   is of 

degree 2, and all other vertices are of degree either 1 or 3). 

ii) The vertex of degree 2 (that is,  v1) is distinct from all other vertices, this 

vertex   v1    is the root. 

iii) In a binary tree, the vertex with degree 2 serves as a root. So every 

binary tree is a rooted tree.   

12.7.4 Properties of Binary trees  

Property (i): The number of vertices n, in a binary tree is  always odd.  

Property (ii): The number of pendent vertices is 
2

1n 
. 

Property (iii): Number of vertices of degree 3 is = n - p - 1 = n - (
2

1n
) - 1  

=  
2

3n 
. 

12.7.5 Example 

In the graph given in Fig. we have that  n = 13,  p =
2

1n 
 = 

2

113 
   = 

2

14
=7. 

Therefore, number of vertices of degree 3 is 
2

3n 
=

2

313 
 = 5. 

12.7.6 Definition 

A non-pendent vertex in a tree is called an internal vertex. 

Observation: 

i) The number of internal vertices in a Binary tree is – 

       
2

1n 
  =   (p - 1)   where  p  =  the number of pendent vertices.            

ii) In the binary tree given in Fig. 12.3.3, the internal vertices are v1, v3, v4, 

v5, v6, v9. These are 6 (=7 - 1 = p - 1) in number. 
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12.7.7 Definition  

Let v be a vertex in a binary tree. Then v is said to be at level Iif v is at a 

distance of I  from the root. 

12.7.8 Example  

i) A 13-vertex,  4-level binary tree was given in Fig.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.27 

 

Here the number of vertices at levels 0, 1, 2, 3, 4 are 1, 2, 2, 4 and  

4 respectively. 

12.7.9 Definition  

The sum of path lengths from the root to all pendent vertices is called the 

path length (or) external path length of a tree. 

12.7.10 Example  

i) The path length of the binary tree given in Fig. 12.28 is:   

 1 + 3 + 3 + 4 + 4 + 4+ 4 = 23. 

ii) In the Figures A and B, there are two 11-vertex binary trees. 

 

level 1 

level 4 

level 0 

level 2 

level 3 
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Figure 12.28 

 

 The path length of graph (fig. A):  2 + 2 + 3 + 3 + 3 + 3 = 16. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.29 

  

The path length of graph (fig. B):   1 + 2 + 3 + 4 + 5 + 5 = 20. 

12.7.11 Search procedures 

Each vertex of a binary tree represents a test with two possible outcomes.   

We start at the root. The outcome of the test at the root sends us to one of 

the two vertices at the next level, where further tests are made and so on. 

level 5 

level 0 
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level -1 
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level -3 
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Reaching a specified pendent vertex (that vertex, which represents the goal 

of the search), terminates the search.  

For such search procedures, it is often important to construct a binary tree in 

which, for a given number of vertices n, the vertex farthest from the root is 

as close to the root as possible. 

i) There can be only one vertex (the root) at level 0.  Number of vertices at 

level one is at the most 2. Number of vertices at level two is at the most 

22 and so on. So the maximum number of vertices possible in a k -level 

binary tree is 20 + 21  + 22  + . . .  + 2k.  

 So n  20 + 21 + 22 + . . . + 2k   

ii) The maximum number among the levels of the vertices in a binary tree 

is called height of the tree. So height = max { level of a vertex  v / v  V}.  

 This height is denoted by l max . 

iii) To construct a binary tree for a given n such that the farthest vertex is as 

far as possible from the root, we must have exactly two vertices at each 

level, except at the 0 level. So max l max = 
2

1n 
. 

12.7.12 Coke Machine Problem 

Suppose that there is a coke machine. The machine is to have a sequence 

of tests  (for example, it should be capable of identifying the coin that is put 

into the machine). We assume that five rupee coin, two rupee coin, one 

rupee coin and fifty paise coin can go through the slot. So the machine can 

identify only these four coins. Every coin put in, is to be tested by the 

machine. Each test has the effect of partitioning the coins into two 

complementary sets. [Suppose a coin is put into the machine. It should test 

whether the coin is “five rupee coin”.  If it is not a five rupee coin, then it should 

test whether it is a two rupee coin and so on]. We suppose the time taken for 

each test is. 
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Test Pattern-1: One type of testing pattern was shown in Graph-(i), given in 

Fig. A. 

Suppose the statistical data tells that  

w1  =  probability of putting a Rs  5   coin    =   0.5 

w2  =  probability of putting a Rs  2   coin    =   0.2 

w3  =  probability of putting a Rs  1   coin    =   0.2 

w4  =  probability of putting a Rs  0.5  coin  =   0.1 

Now   

)v(lw ii   = )v(lw 11   + )v(lw 22   + )v(lw 33   + )v(lw 44   

          =  (0.5) (1)  + (0.2) (2)  +  (0.2) (3)  +  (0.1) (4) = 1.12 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.30 

 

So expected time to be taken by the machine for testing one coin is 1.9t.   

Thus if the machine follows (for its testing pattern) the binary tree given in 

Graph-(a), then the expected time for testing one coin is equal to  1.9t. 

Test Pattern-2: Another type of testing pattern was given in the  

Fig. 12.3.12 B.   

)v(lw ii   = )v(lw 11   + )v(lw 22   + )v(lw 33  + )v(lw 44   
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                        = (0.5) (2)  + (0.2) (2)  +  (0.2) (2)  +  (0.1) (2) = 2.0 

 

 

 

 

 

 

 

 

 

 

Figure 12.31 

 

So here, the expected time to be taken by the machine for testing one coin 

is 2t. 

Thus if the machine follows (for its testing pattern) the binary tree given in 

graph B then the expected time for testing one coin is  2t. 

 

12.8 Summary 

This unit is meant for beginning your process of learning Graph Theory.  It 

started with the definition of Graph and Moved on to illustrate the concepts 

of finite and infinite graph, incidence, degree, isolated vertex, pendent vertex 

and null graph.  We also discussed the isomorphism between graphs and 

subgraphs of a given graph with appropriate illustrations.  In this unit, we 

dealt with a special type of graphs called trees and studied some of their 

properties. The concept of minimally connected graphs was introduced.  By 

listing all the properties of tree, it was easy to observe that there are five 

different equivalent conditions for tree. 

 

v1 v2 v3 v4 
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0.2 0.5 

Rs 5 or Rs 2 

Rs 5 Rs 2 

Rs 1 
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Rs 1 or Rs 0.50 
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12.9 Terminal Questions   

1. Define the terms: Graph, finite graph, infinite graph, incidence, degree, 

isolated vertex, pendent vertex, null graph 

2. Show that the sum of the degrees of the vertices of a finite graph G  is 

twice the number of edges. 

3. Show that the number of vertices of odd degree is always even. 

4. Show that an infinite graph with finite number of edges must have an 

infinite number of isolated vertices. 

5. Show that the maximum degree of any vertex in a simple graph is  

(n - 1). 

6. Show that the maximum number of edges in a simple graph with n 

vertices is   
2

)1n(n 
. 

7. Define the terms: tree, pendent vertex.  How many different trees are 

there of order 2, 3, 4, 5 ? 

8. Show that G is a tree  there is one and only one path between every 

pair of vertices. 

9. (i) Show that  a tree G with n vertices has n - 1 edges.  

 (ii) Show that any connected graph G with n vertices and n - 1 edges is 

 tree. 

10. Show that in a tree there exist at least two pendant vertices. 

11. Prove any three equivalent conditions for a tree ? 

 

12.10 Answers  

Self Assessment Questions 

1. Here d(u1) = 3; d(u2) = 4; d(u3) = 3; d(u4) = 3; and d(u5) = 1 

 Now 


5

1i

iu = 3 + 4 + 3 + 3 + 1 = 14.   E = 7. 
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 So 


5

1i

i )u(d  = 2 E  

 Therefore, the sum of degrees of all the vertices of a graph G is twice 

 the number of edges in G. 

2. No, since the sum of the degrees of the vertices cannot be odd. 

3. Let G be a regular graph of degree 4 with 10 edges and let 'n' be the 

number of vertices in G.  Then 
Vu

)u(d = 2  10 = 20. 

  n  4 = 20.   n = 5. 

 Yes 

5. G1 is a tree, since it is a connected graph without circuits.  G2 is not a 

 tree (since it is not connected). 

6. 

 

 

 

 First draw five vertices. Then connect them, so that no cycles are 

created.  In this process, we must be careful not to repeat trees since 

two trees which appear different may just be drawn differently.  Here 

there are three trees with five vertices as shown above. 

 . 

 

 

 

G1 
G2 G3 
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Unit 13 Algebraic Codes and Cryptography 

Structure 

13.1 Introduction 

 Objectives 

13.2 Preliminaries 

13.3 Hamming Distance 

13.4 Linear Codes 

13.5 Introduction to Cryptography  

13.6 Summary 

13.7 Terminal Questions 

13.8 Answers  

 

13.1 Introduction 

Coding theory is an application of algebra that has become increasingly 

important over the last several decades.  When we transmit data, we are 

concerned about sending a message over a channel that could be affected 

by noise.  We wish to be able to encode and decode the information in a 

manner that will allow the detection, and possible the correction of errors 

caused by noise. This situation arises in many areas of communications, 

including radio, telephone, television, computer communication. Probability, 

combinatorics, group theory, linear algebra play important roles in coding 

theory. 

Objectives: 

At the end of the unit, you would be able to: 

 understand the fundamental idea of coding system        

 explain the hamming distance between the code words 

 learn the group codes, linear codes and parity check codes 

 apply the concepts to real world problems in communication technology  
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13.2 Preliminaries  

Let us examine a simple model of a communications system for transmitting 

and receiving coded messages. Uncoded messages may be composed of 

letters or characters, but typically they consist of binary m-tuples. These 

messages are encoded into codewords, consisting of binary n-tuples, by a 

devise called an encoder.  The message is transmitted and then decoded.  

We will consider the occurrences of errors during transmission.  An error 

occurs if there is a change in one or more bits in the codeword.  A decoding 

scheme is a method that either converts an arbitrarily received n-tuple into 

meaningful decoded message or gives an error message for that n-tuple. 

Encoding and decoding messages: 

                                       m-digit message  

  

Encoder 

  

                                 n-digit code word 

  

Transmitter 

  

                                                Noise 

                                          

Receiver 

                                           

                                       n-digit received word 

                                           

Decoder 

                                            

m-digit received message or error. 
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Consider the set Z2 = {0, 1} and additive group (Z2, +), where + denotes 

addition modulo 2.  Then, for any positive integer n, we have  

n
2Z  = Z2  Z2 … Z2 (n factors) = {(a1, a2, …, an) / ai  Z2 for each i}. 

Thus, every element of 
n
2Z  is an n-tuple (a1, a2, …, an) in which every entry 

is either 0 or 1.  Some times the n-tuple can be written as a1 a2 … an called 

a word or a string.  Each ai (either 0 or 1) is called a bit. For example, 

11001 is a word in 
5
2Z .  That is  (1,1,0,0,1)  

5
2Z .   

Suppose a string c = c1 c2 … cn  
n
2Z  is transmitted from a point A through a 

transmitted channel T.  In normal situations, this word would be received at 

a point B without any change.  But in practice, transmission channel 

experiences disturbances (which is referred as noise) that may cause a 0 to 

be received as a 1 (or vice versa).  Therefore, the word c transmitted from A 

is received as a different word r  
n
2Z  at B.  Let the word r will be of the 

form r =  r1 r2 … rn where each ri is either 0 or 1, rj  cj for some j, 1≤ j ≤ n. 

Point A 

c = c1 c2 … cn   
n
2Z  

                                                                     

                                                    T: Transmitted channel 

                                                                     

Point B 

 r = r1 r2 … rn   
n
2Z  

If ri = ci for all values of I except k values (k < n), we say that r differs from c 

in k places. The word r is denoted by T(c). Some times, it is convenient to 

write r as r = c + e where e   
n
2Z . 
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13.2.1 Note 

Suppose p is the probability that an event happens in a single trial.  Now q = 

(1 - p) is the probability that the event will fail in a single trial.  Then the 

probability of the event to occur exactly x times in n trials (that is, x 

successes and (n – x) failures) is given by P(x) =  nCx .p
x qn-x  for  x = 0, 1, 2, 

…. Such a distribution is called a Binomial distribution.  Its probability 

function   (or density function) is given by – 

P(X = x) = nCx p
x  qn-x,  x = 0, 1, 2, 3, …, n, where p =  (1 – q), and P(x) = 0 

for the other values of x. The two constants n and p appearing in the density 

function are called parameters of the Binomial distribution. We can fit in a 

Binomial distribution if – 

 The result of any trial is either a success (occurrence) or a failure (non-

occurrence),  

 The probability of success in each trial is a constant p,  

 The trials are independent.   

 Binomial distribution is a discrete distribution as X can take only the 

integral values: 0, 1, 2, …, n. Any variable, which follows binomial 

distribution is known as binomial variants. 

For example, a fair coin is tossed 6 times (or equivalently six fair coins are 

tossed).  Success means getting a head.  Then,  

i. The probability that exactly two heads occur (that is, k = 2) is   

6C2(
2

1
)2  (

2

1
)4 =

)!26(!2

!6


( 

2

1
)6 = 

!4!2

!6
.

64

1
= 

2

56 
  

64

1
 = 

64

15
. 

ii. The probability of getting at least four heads (that is, k = 4, 5 or 6) is   

6C4 (
2

1
)4 (

2

1
)2 + 6C5 (

2

1
)5 (

2

1
)  + 6C6 (

2

1
)6 =

64

15
 + 

64

6
 + 

64

1
 = 

32

11
.   

iii. The probability of getting no heads is  q6  =  (
2

1
)6  =  

64

1
.   

 So the probability of getting at least one head is 1 – q6 = 1 -
64

1
 =  

64

63
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13.2.2 Binary Symmetric Channel 

It is a model consisting of a transmitter capable of sending a binary signal, 

either a 0 or a 1, together with a receiver.  Let p be the probability that the 

signal is correctly received.  Then q = 1-p is the probability of an incorrect 

reception.  If a 1 is sent, then the probability that a 1 is received is p and the 

probability that a 0 is received is q.  The probability that no errors occur 

during the transmission of a binary codeword of length n is pn.  

For example, if p = 0.999 and a message consisting of 10,000 bits is sent, 

then the probability of a perfect transmission is (0.9999)10,000  0.00005.    

13.2.3 Theorem 

If a binary n-tuple (x1, x2, …, xn) is transmitted across a binary symmetric 

channel with probability p that no error will occur in each coordinate, then 

the probability that there are errors in exactly k coordinates is – 

k n kn
q p

k

 
 
 

 

Proof: Fix k different coordinates. We first compute the probability that an 

error has occurred in this fixed set of coordinates.  

The probability of an error occurring in a particular one of these k 

coordinates is q; the probability that an error will not occur in any of the 

remaining n-k coordinates is p.  

The probability of each of these n independent events is,  

qkpn-k. 

The number of possible error patterns with exactly k errors occurring is 

equal to – 

 

n n!

k k! n k !

 
 

 
, 

the number of combinations of n things taken k at a time. Each of these 
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error patterns has probability qkpn-k of occurring; hence the probability of all 

these error patterns is – 

k n kn
q p

k

 
 
 

. 

13.2.4 Example 

Suppose that p = 0.995 and a 500-bit message is sent.  The probability that 

the message was sent error-free is pn = (0.995)500  0.082. 

The probability of exactly one error occurring is  

n 1n
q p

1

 
 
 

 = 500(0.005)(0.995)499  0.204. 

The probability that exactly two errors is  

2 n 2n
q p

1

 
 
 

 = 
500 499

2


(0.005)2(0.995)498  0.257. 

The probability of more than two errors is approximately 

1 - 0.082 - 0.204 - 0.257 = 0.457 

13.2.5 Example  

The word c = 1010110 is transmitted through a binary symmetric channel. If 

e = 0101101 is the error pattern, find the word r received. If p = 0.05 is the 

probability that a signal is incorrectly received, find the probability with which 

r is received. 

Solution: Given c = 1010110   
7
2Z  and error pattern e = 0101101  

7
2Z .  

Therefore, the received word is r = c + e = 1010110 + 0101101 = 1111011  

(where + is the addition in 
7
2Z , that is addition is component wise,   

1+1 = 0, 1+0 = 1, 0+1 = 1, 0+0 = 0). 

It is clear that r differs from c in the second, fourth, fifth and seventh places 

(total 4 places). 
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The probability with which r is received is – 

p4(1-p)7-4 = (0.05)4(1-0.05)3 = (0.05)4(0.95)3  0.000005. 

13.2.6 Example  

The word c = 1010110 is transmitted through a binary symmetric channel.  If 

p = 0.02 is the probability of incorrect receipt of a signal, find the probability 

that c is received as r = 1011111.  Determine the error pattern. 

Solution: The words c and r in 
7
2Z  differ in two places (fourth and seventh). 

The probability that c is received as r is – 

p2(1-p)7-2 = (0.02)2(1-0.02)5 = 0.00036. 

The error pattern e is given by r = c + e, where + is the component wise 

addition in 
7
2Z . 

Let e = e1 e2 … e7, we have r = c + e1 e2 … e7. 

This implies 1011111 = 1010110 + e1 e2 … e7. 

Since the addition is component wise in 
7
2Z , we have, 

1 = 1 + e1  e1 = 0, 0 = 0 + e2  e2 = 0, 1 = 1 + e3  e3 = 0, 1 = 0 + e4  e4  

= 1, 1 = 1 + e5  e5 = 0, 1 = 1 + e6  e6 = 0, 1 = 0 + e7  e7 = 1. 

Therefore, e = 0001001. 

13.2.7 Block Codes  

If we are to develop efficient error-detecting and error-correcting codes, we 

will need more sophisticated mathematical tools.  Group theory will allow 

faster methods of encoding and decoding messages. A code is a (n, m) 

block code if the information that is to be coded can be divided into blocks of 

m binary digits, each of which can be encoded into n binary digits.  More 

precisely, an (n, m)-block code consists of an encoding function, 

E:   
m
2Z   

n
2Z  

 and a decoding function,  
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D: 
n
2Z   

m
2Z . 

A code word is any element in the image of E. We also require that E be 

one-to-one so that two information blocks will not be encoded into the same 

codeword. If the code is to be error-correction, then D must be onto. 

13.2.8 Example 

Define an encoding function, 

E: 
8
2Z   

9
2Z  

 by E(e1 e2 … e8) =  e1 e2 … e9 where,  

e9 = 
8

i

i 1

e


 ,  

the summation being taken under addition modulo 2. If p = 0.001 is the 

probability that a signal is received incorrectly, find the probability that the 

code word 110101101 is received with at the most one error. 

Solution: Let e =  e1 e2 … e8.  Using the definition of e9, we have that if odd 

number of eis in e are 1s (and the rest are 0s), then e9 = 1.  In this case,  

c = E(e) =  e1 e2 … e8e9 contains even number of 1s. On the other hand, if 

an even number of eis in e are 1s (and the rest are 0s), then e9 = 0. 

Hence in this case c = E(e) contains an even number of 1s. 

Thus the given encoding function is such that the code word c = E (e) of 

every word e  
8
2Z  contains an even number of 1s. Now consider the given 

code word  – 

c = 110101101  
9
2Z . 

If p is the probability that a signal is incorrectly received, then the probability 

of receiving c correctly is (1-p)9, and the probability of receiving c with one 

error is,     
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89
p (1 p)

1

 
 

 
. 

 Therefore, the probability of receiving c with at the most one error is – 

(1-p)9 +  
89

p (1 p)
1

 
 

 
. 

Given that p = 0.001.  Therefore, the required probability is,  

(1-0.001)9 + 90.001(1-0.001)8 = 0.999964167. 

13.2.9 Parity Check Code  

Define an encoding function 

E: 
m
2Z   

m 1
2Z 

 

 by  

E(e1 e2 … em) =  e1 e2 … em+1 where  

em+1 =   

0  if  e  contains even number of  1s

1  if  e  contains odd number of  1s



 , and the corresponding 

decoding function is D: 
m 1
2Z 

  
m
2Z  defined by  

D(r1 r2 … rmrm+1) = r1 r2 … rm. 

Using the definition of E: 
3
2Z  

4
2Z , 

 E(000) = 0000,  E(001) = 0011,  E(011) = 0110, …,  E(111) = 1111 

Using the definition of D: 
4
2Z  

3
2Z ,  

D(0000) = 000, D(0001) = 000, …, D(1010) = 101, D(1100) = 110,…, 

D(1111) = 111.    

 

13.3 Hamming Distance    

Let x = (x1, x2, …,xn) and y = (y1, y2, …,yn) be binary n-tuples. The hamming 

distance or distance d(x,y), between x and y is the number of bits in which x 
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and y differ.  The distance between two code words is the minimum number 

of transmission errors required to change one codeword into the other.  The 

minimum distance for a code, dmin is the minimum of all distances d(x,y) 

where x and y are distinct code words.  The weight w(x) of a binary code 

word x is the number of 1’s in x.  Clearly w(x) = d(x, 0) where 0 = (00…0).  

13.3.1 Example 

Let x = (10101), y = (11010) and z = (00011) be all of the code words in 

some code C.  Then we have the following hamming distances. 

d(x, y) = 4, d(x, z) = 3, d(y, z) = 3. 

The minimum distance for this code is 3.  Also we have the following weights. 

w(x) = 3, w(y) = 3, w(z) = 2. 

13.3.2 Problem 

Let x and y be binary n-tuples.  Then w(x + y) = d(x, y). 

Solution: Suppose that x and y are binary n-tuples.  Then the distance 

between x and y is exactly the number of places in which x and y differ. But  

x and y differ in a particular coordinate exactly when the sum in the 

coordinate is 1, since 1 + 1 = 0, 0 + 0 = 0, 1 + 0 = 1, 0 + 1 = 1.  

Consequently, the weight of the sum must be the distance between the two 

code words. 

13.3.3 Note 

For all x, y    
m
2Z  we have w(x + y) ≤ w(x) + w(y).  

13.3.4 Problem 

Let x, y, z  
n
2Z .  Then,  

i) d(x, y)  0 

ii) d(x, y) = 0 exactly when x = y 

iii) d(x, y) = d(y, x) 

iv) d(x, y) ≤ d(x, z) + d(z, y). 
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Solution:  

i) Since w(x+y)  0, we have that d(x, y)  0. 

ii) d(x, y) = 0  w(x + y) = 0  x + y contains only 0s  x and y contains 

 only 1s or only 0s  x = y. 

iii) d(x, y) = w(x + y) = w(y + x) = d(y, x) 

iv) d(x, z) = w(x + z) 

v) = w(x + y + y + z)             (since y + y = 0 in Z2) 

    ≤ w(x + y) + w (y + z)       (by the above note) 

    = d(x + y) + d(y + z) 

13.3.5 Note 

i) The function d satisfies the condition in the above problem is called a 

hamming metric and the pair (
n
2Z , d) is called a Hamming metric space. 

ii) For a specified word a  
n
2Z  and a positive integer k, we define the 

sphere with center a and the radius k units is,  

S(a, k) = {x  
n
2Z / d(x, a) ≤ k}. 

13.3.6 Definition 

Let x1, x2, …, xn denote the codewords in a block code.  The conditional 

probability P(xi y) for i= 1, 2, …, n where P(xi  y) is the probability that xi 

was the transmitted word given that y was the received word. If P(xk  y) is 

the largest of all conditional probabilities computed, then xk was the 

transmitted word.  Such a criterion for determining the transmitted word is 

known as the maximum likelihood decoding criterion. 

13.3.7 Note 

Suppose that x  = (1101) and y = (1100) are codewords in some code.  If we 

transmit (1100) and an error occurs in the rightmost bit, then (1100) will be 

received.  Since (1100) is a codeword, the decoder will decode (1100) as 

the transmitted message.  This code is clearly not very appropriate for error 
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detection.  The problem is that d(x, y) = 1. If x = (1100) and y = (1010) are 

codewords, then d(x, y) = 2. If x is transmitted and a single error occurs, 

then y can never be received.  Consider the following table of distances of 

all 4-bit codewords in which the first three bits carry information and the fourth is 

an even parity check bit.  We can see that the minimum distance is 2.     

Distances between 4-bit codewords. 

 0000 0011 0101 0110 1001 1010 1100 1111 

0000 0 2 2 2 2 2 2 4 

0011 2 0 2 2 2 2 4 2 

0101 2 2 0 2 2 4 2 2 

0110 2 2 2 0 4 2 2 2 

1001 2 2 2 4 0 2 2 2 

1010 2 2 4 2 2 0 2 2 

1100 2 4 2 2 2 2 0 2 

1111 4 2 2 2 2 2 2 0 

    

13.4 Linear Codes  

13.4.1 Definition  

Let E: 
m
2Z  

n
2Z , n > m be an encoding function and C = {E(w)w 

m
2Z } be 

the set of codes. Then C is called a group code if C is a subgroup of
n
2Z .   

13.4.2 Example 

Consider the encoding function E: 
2
2Z  

6
2Z  of the triple repetition code.  

For this code, we have – 

E(00) = 000000, E(10) = 101010, E(01) = 010101, E(11) = 111111 so that     

C = {000000, 101010, 010101, 111111}. 

Also
6
2Z  is a finite group under the component wise addition modulo 2 and 

also C  
6
2Z . (Further the reader can verify that it is an abelian group). 
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It can be easily verified that C is closed under component wise addition 

modulo 2. Therefore, C is a subgroup. Hence C is a group code. 

13.4.3 Example 

Suppose that a code  consists of the following 7-tuples:  

(0000000) (0001111) (0010101) (0011010) 

(0100110) (0101001) (0110011) (0111100) 

(1000011) (1001100) (1010110) (1011001) 

(1100101) (1101010) (1110000) (1111111) 

It can be easily verified that this code is a subgroup of 
7
2Z  and hence a 

group code. 

13.4.4 Problem 

Let dmin be the minimum distance for a group code C.   Then dmin is the 

minimum of all the nonzero weights of the nonzero codewords in C.  That is,  

dmin  = min {w(x)  x  0}. 

Solution: 

dmin = min {d(x, y)  x  y} 

= min {d(x, y)  x + y  0} 

= min {w(x + y)  x + y  0} 

= min {w(z)  z  0}. 

13.4.5 Definition 

The inner product of two binary n-tuples to be xy = x1y1 + … + xnyn, where x 

= (x1, x2, …,xn)
t  and y = (y1, y2,…, yn)

t are column vectors. 

We can also write an inner product as the product of a row matrix with a 
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column matrix. That is, xy = xty = (x1 x2, …xn)

1

2

n

y

y

.

.

.

y

 
 
 
 
 
 
 
  
 

  =  x1y1 + … + xnyn.   

 For instance, if x = (011001)t and y = (110101)t,   then xy = 0.  

13.4.6 Notation 

Mmn (Z2) = the set of all mn matrices with entries in Z2.  We adopt the 

usual matrix operations except that all addition and multiplication operations 

occur in Z2. 

13.4.7 Definition 

The null space of a matrix H  Mmn (Z2) defined to be the set of all binary n-

tuples x such Hx = 0. We denote the null space of a matrix H by Null (H). 

13.4.8 Example 

Suppose H = 

01010

11110

00111

 
 
 
 
 

. For a 5-tuple x = (x1, x2, …,x5)
t  to be in the null 

space of H, Hx = 0. 

Equivalently, the following system of equations must be satisfied: 

                      x1 +  x4  = 0  

        x1 + x2 + x3 + x4  = 0  

                x3 + x4 + x5 = 0  

The set of binary 5-tuples satisfying these equations is (00000)(11110) 

(10101) (01011). This code is easily determined to be a group code. 

13.4.9 Problem 

Let H  Mmn (Z2). Then prove that the null space of H is a group code. 
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Solution: 

Closure: Let x, y  Null(H) for some H   Mmn (Z2).  

Then Hx = 0 and Hy = 0.  So H(x + y) = Hx + Hy = 0 + 0 = 0.  Therefore  

x + y is in the null space of H and so must be a code word. 

Inverse:  Each element of 
n
2Z is its own inverse. 

Hence Null (H) is a code word. 

13.4.10 Definition 

A code is a linear code if it is determined by the null space of some matrix  

H  Mmn (Z2).  

13.4.11 Example 

Let C be the code given by the matrix 

H = 

000111

011011

101001

 
 
 
 
 

  Suppose that the 7-tuple x = (010011)t is received.   

Now Hx = 

0

1

1

 
 
 
 
 

 Therefore, the received word is not a code word. 

Self Assessment Questions 

1. By doing any type of addition, explain why the following set of 4-tuples in  

4
2Z  cannot be a group code. 

 (0110) (1001) (1010) (1100) 

2. Compute the hamming distances between the following pairs of n-tuples 

 (i) (011010), (011100) (ii) (00110), (01111). 

3. Compute the weighs of the following n-tuples 

 (i) (011010)  (ii) (01111) 

4. In each of the following codes, what is the minimum distance (that is, 

dmin ) for the code 
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 (i) (011010) (011100) (110111) (110000) 

 (ii) (000000) (011100) (110101) (110001) 

5. For e = 110  
3
2Z , find the sphere S(e, 1). 

 

13.5 Introduction to Cryptography 

Cryptography is the study of sending and receiving secret messages.  The 

aim of cryptography is to send messages across a channel so only the 

intended recipient of the message can read it.  In addition, when a message 

is received, the recipient usually requires some assurance that the message 

is authentic.  Modern cryptography is fully dependant on basic algebraic 

systems like semigroups / groups and number theory. 

13.5.1 Definitions  

The message to be sent is called the plaintext.  The disguised message is 

called the ciphertext. The plaintext and ciphertext are both written in an 

alphabet, consisting of letters or characters.  Characters can include not 

only the familiar alphabetic characters A, …,Z and a, …, z but also digits, 

punctuation marks, and blanks.   

13.5.2 Note  

A cryptosystem has two parts  

i) Encryption: The process of transforming a plaintext message to a 

ciphertext message (The parameter used to the encryption function is 

called a Key).   

ii) Decryption: The reverse transformation of changing a ciphertext 

message into a plaintext message.   

Systems that use two separate keys, one for encoding and another for 

decoding, are called public key cryptosystems.  Since knowledge of the 

encoding key does not allow anyone to guess at the decoding key, the 

encoding key can be made public. 
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To encrypt a plaintext message, we apply to the message some function 

which is kept secret, say f.  This function will yield an encrypted message. 

Given the encrypted form of the message, we can recover the original 

message by applying the inverse transformation f -1. 

13.5.3 Example 

i) We consider the private key cryptosystems in which the shift code was 

used by Julius Caesar. 

 The encoding function f(p) = p + 3 mod 26 with the encoded  message  

 DOJHEUD.   

 Step1: We first digitize the alphabet by A = 00, B = 01, …, Z = 25. 

 Step 2: Using encoding function f(p) = p + 3 mod 26 we get A  D, B 

  E, …, Z  C.  

 Step 3: Digitize DOJHEUD: we get 3, 14, 9, 7, 4, 20, 3. 

 Step 4: Consider the decoding function is f-1(p) = p -3 mod 26 = p + 23 

 mod 26.  

 Step 5: Apply the inverse transformation (step 4) to get 0, 11, 6, 4, 1, 17, 0  

 Step 6: Decode to get ALGEBRA. 

ii) The encoding function f(x) = x + 5 mod 26 with the encoded message 

SJFMMDIB. 

 Step1: We first digitize the alphabet by A = 00, B = 01, …, Z = 25. 

 Step 2:Using encoding function f(x) = x + 5 mod 26 we get A  F, B   

 G, …, Z  E.   

 Step 3: Digitize SJFWWNSL: we get 18, 9, 5, 22, 22, 13, 18, 11.   

 Step 4: Consider the decoding function is f-1(x) = x-5 mod 26 = x + 21 

 mod 26. 

 Step 5:  Apply the inverse transformation (step 4) to get 13, 4, 0, 17, 

 17, 8, 13, 6.  

 Step 6: Decode to get NEARRING. 
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13.5.4 Remark 

Simple shift codes are examples of monoalphabetic cryptosystems. In these 

ciphers a character in the enciphered message represents exactly one 

character in the original message. Such cryptosystems are not very 

sophisticated and are quite easy to break. In a simple shift as described in 

the example 2.6.3, there are only 26 possible keys. It would be quite easy to 

try them all rather than to use frequency analysis. 

Let us investigate a slightly more sophisticated cryptosystems. 

13.5.5 Affine Cryptosystem 

Suppose that the encoding function is given by 

f(p) = ap + b mod 26. 

We first need to find out when a decoding function f -1 exists.  Such a 

decoding function exists when we can solve the equation 

c = ap + b mod 26 for p.  This is possible exactly when a has an inverse or 

equivalently, when gcd (a, 26) = 1.  In this case,  f -1(p) = a-1p - a-1b  mod 26.   

13.5.6 Example 

Let us consider the affine cryptosystem f(p) = ap + b mod 26.  For this 

cryptosystem to work we must choose an a  Z26 that is invertible. This is 

only possible if gcd (a, 26) = 1.  Let a = 5. Then a is invertible and a-1 = 21.  

Since gcd(5, 26) = 1. Therefore, we can take the encryption function to be   

f(p) = 5p + 3 mod 26. Thus, ALGEBRA is encoded as 3, 6, 7, 23, 8, 10, 3, or 

DGHXIKD. The decryption function will be f -1(p) = 21p - 213 mod 26.  = 21p 

+ 15 mod 26. 

13.5.7 Public Key Cryptography  

If the routine (traditional) cryptosystems are used, anyone who knows 

enough to encode a message will also know enough to decode an 

intercepted message.  The public key cryptography which is based on the 

observation that the encryption and decryption procedures need not have 
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the same key.  This removes the requirement that the encoding key be kept 

secret.  The encoding function f must be relatively easy to compute, but f -1 

must be extremely difficult to compute without some additional information, 

so that someone who knows only the encrypting key cannot find the 

decrypting key without prohibitive computation.   

13.5.8 The RSA Cryptosystem 

The RSA cryptosystem introduced by R. Rivest, A. Shamir and L.Adleman 

in 1978, is based on the difficulty of factoring large numbers.  Though it is 

not a difficult task to find two large random primes and multiply them 

together, factoring a 150-digit number that is the product of two large primes 

would take 100 million computers operating at 10 million instructions per 

second about 50 million years under the fastest algorithms currently known. 

13.5.9 Working of the RSA cryptosystem 

Assume that we choose two random 150-digit prime numbers p and q.  

Next, we compute the product n = pq and also compute (n) = m = (p-1)(q-

1), where  is the Euler -function. Now we start choosing random integers 

E until we find one that is relatively prime to m; that is, we choose E such 

that gcd(E,m) = 1. Using the Euclidean algorithm, we can find a number D 

such that DE = 1 (mod m).  The numbers n and E are now made public.  

Suppose now the person B (Bob) wishes to send person A (Alice) a 

message over a public line.  Since E and n are known to everyone, anyone 

can encode messages. Bob first digitizes the messages according to some 

scheme, say A = 00, B = 02, …, Z = 25.  If necessary, he will break the 

message into pieces such that each piece is a positive integer less than n.  

Suppose x is one of the pieces.  Bob forms the number y = xE mod n and 

sends y to Alice.  For Alice to recover x, she only needs to compute x = yD 

mod n.  Only Alice knows D. 
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13.5.10 Example 

Suppose we wish to send some message, which when digitized is 23.  

Let p = 23 and q = 29.  Then n = pq = 667 

and (n) = m = (p-1)(q-1) = 616. 

Let E = 487, since gcd(616, 487) = 1.  

The encoded message is computed to be 23487 mod 667 = 368. 

This computation can be reasonably done by using the method of repeated 

squares as described.  Using the Euclidean algorithm, we determine that 

191 E = 1 + 151m; therefore, the decrypting key is (n, D) = (667, 191).  We 

recover the original message by calculating 368191 mod 667 = 23.     

Self Assessment Questions  

6. An encoding function E: 
3
2Z  

4
2Z  is defined by the generator matrix  G 

   = 

1001

0101

0011

 
 
 
 
 

 

i) Find the set of all code words assigned by E. 

ii) Determine the associated parity-check matrix. 

 

13.6 Summary  

This unit provides a brief idea about the encoding and decoding of the 

messages in a transmitted channel.  This concept is an application of 

modern algebra. The student will be able to apply the concepts of 

semigroups, groups, cosets and several useful algebraic techniques in 

sending messages in terms of encoding and decoding functions. Parity 

check and generator matrices are useful in solving practical problems in 

communications systems. We also discussed the elementary concepts of 

cryptosystems.  
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13.7 Terminal Questions  

1. Explain Parity check code. 

2. Explain Hamming distance. 

3. Describe cryptosystems.  

 

13.8 Answers  

Self Assessment Questions 

1. (0000)  C 

2. (i) 2, (ii) 2  

3. (i) 3, (ii) 4 

4. (i) dmin = 2, (ii) dmin = 1. 

5. S(e, 1) = {110, 010, 100, 111}. 

6. (i) {0000, 0011, 0101, 1001, 1100, 1010, 0110, 1111} 

7. (ii) H = [1111] 
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